Solveeit Logo

Question

Question: If \[y = {\tan ^{ - 1}}\left( {\dfrac{{a\cos x - b\sin x}}{{b\cos x + a\sin x}}} \right)\] then \[\d...

If y=tan1(acosxbsinxbcosx+asinx)y = {\tan ^{ - 1}}\left( {\dfrac{{a\cos x - b\sin x}}{{b\cos x + a\sin x}}} \right) then dydx=\dfrac{{dy}}{{dx}} = ?
A) ab\dfrac{a}{b}
B) ba\dfrac{{ - b}}{a}
C) 11
D) 1 - 1

Explanation

Solution

We will solve this question by using the inverse trigonometric formula tan1xtan1y{\tan ^{ - 1}}x - {\tan ^{ - 1}}y as shown below:
tan1xtan1y=tan1[(xy)(1+xy)]{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - y} \right)}}{{\left( {1 + xy} \right)}}} \right] , where xx and yy are two variables.

Complete step-by-step solution:
Step 1: It is given that y=tan1(acosxbsinxbcosx+asinx)y = {\tan ^{ - 1}}\left( {\dfrac{{a\cos x - b\sin x}}{{b\cos x + a\sin x}}} \right). By dividing the numerator and denominator of the RHS side of the expression by bcosxb\cos x, we get:
y=tan1(acosxbsinxbcosxbcosx+asinxbcosx)y = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{{a\cos x - b\sin x}}{{b\cos x}}}}{{\dfrac{{b\cos x + a\sin x}}{{b\cos x}}}}} \right)
Now by dividing and numerator and denominator part of the RHS side of the expression, we get:
y=tan1(absinxcosx1+absinxcosx)\Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{a}{b}\dfrac{{\sin x}}{{\cos x}}}}} \right)
By putting sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan x in the above expression y=tan1(absinxcosx1+absinxcosx)y = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} - \dfrac{{\sin x}}{{\cos x}}}}{{1 + \dfrac{a}{b}\dfrac{{\sin x}}{{\cos x}}}}} \right) , we get:
y=tan1(abtanx1+abtanx)\Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{{\dfrac{a}{b} - \tan x}}{{1 + \dfrac{a}{b}\tan x}}} \right) ……………. (1)
Step 2: Now, by applying the formula of tan1xtan1y=tan1[(xy)(1+xy)]{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - y} \right)}}{{\left( {1 + xy} \right)}}} \right] in the expression (1), we get:
y=tan1(ab)tan1(tanx)\Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) - {\tan ^{ - 1}}\left( {\tan x} \right) , where x=abx = \dfrac{a}{b} and y=tanxy = \tan x.
We know that tan1(tanx)=x{\tan ^{ - 1}}\left( {\tan x} \right) = x , (tan1x=1tanx)\left( {\because {{\tan }^{ - 1}}x = \dfrac{1}{{\tan x}}} \right) , substituting this value in the above expression y=tan1(ab)tan1(tanx)y = {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) - {\tan ^{ - 1}}\left( {\tan x} \right), we get:
y=tan1(ab)x\Rightarrow y = {\tan ^{ - 1}}\left( {\dfrac{a}{b}} \right) - x ………… (2)
Step 3: Differentiating the expression (2), for xx, we get:
dydx=0(1)\Rightarrow \dfrac{{dy}}{{dx}} = 0 - \left( 1 \right) , (tan1ab=constant)\left( {\because {{\tan }^{ - 1}}\dfrac{a}{b} = {\text{constant}}} \right)
By simplifying into the RHS side of the above expression, we get:
dydx=1\Rightarrow \dfrac{{dy}}{{dx}} = - 1
Therefore, if y=tan1(acosxbsinxbcosx+asinx)y = {\tan ^{ - 1}}\left( {\dfrac{{a\cos x - b\sin x}}{{b\cos x + a\sin x}}} \right), then dydx=1\dfrac{{dy}}{{dx}} = - 1.

Option D is the correct answer.

Note: While solving these types of questions students should remember some formulas to make the calculation easy. For example, we have used the formula of tan1xtan1y=tan1[(xy)(1+xy)]{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - y} \right)}}{{\left( {1 + xy} \right)}}} \right] , explanation of which is as given below for your better understanding:
To prove tan1xtan1y=tan1[(xy)(1+xy)]{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\left[ {\dfrac{{\left( {x - y} \right)}}{{\left( {1 + xy} \right)}}} \right] , let tan1x=A{\tan ^{ - 1}}x = {\text{A}},tan1y=B{\tan ^{ - 1}}y = {\text{B}}.
As we know that tan(AB)=tanAtanB1tanAtanB\tan \left( {{\text{A}} - {\text{B}}} \right) = \dfrac{{\tan {\text{A}} - \tan {\text{B}}}}{{1 - \tan {\text{A}}\tan {\text{B}}}} , so by substituting the values of tan1x=A{\tan ^{ - 1}}x = {\text{A}},tan1y=B{\tan ^{ - 1}}y = {\text{B}} in this formula, we get:
tan(tan1xtan1y)=tan(tan1x)tan(tan1y)1+tan(tan1x)tan(tan1y)\Rightarrow \tan \left( {{{\tan }^{ - 1}}x - {{\tan }^{ - 1}}y} \right) = \dfrac{{\tan \left( {{{\tan }^{ - 1}}x} \right) - \tan \left( {{{\tan }^{ - 1}}y} \right)}}{{1 + \tan \left( {{{\tan }^{ - 1}}x} \right)\tan \left( {{{\tan }^{ - 1}}y} \right)}}
From here, we can write tan(tan1x)=x\tan \left( {{{\tan }^{ - 1}}x} \right) = x and tan(tan1y)=y\tan \left( {{{\tan }^{ - 1}}y} \right) = y because f(f1a)=af\left( {{f^{ - 1}}a} \right) = a, where ff is known as any function. By substituting these values in the above expression, we get:
tan(tan1xtan1y)=xy1+xy\Rightarrow \tan \left( {{{\tan }^{ - 1}}x - {{\tan }^{ - 1}}y} \right) = \dfrac{{x - y}}{{1 + xy}}
Now by bringing tan\tan from the LHS side to the RHS side of the expression we get:
(tan1xtan1y)=tan1xy1+xy\Rightarrow \left( {{{\tan }^{ - 1}}x - {{\tan }^{ - 1}}y} \right) = {\tan ^{ - 1}}\dfrac{{x - y}}{{1 + xy}}
It is proved that tan1xtan1y=tan1xy1+xy{\tan ^{ - 1}}x - {\tan ^{ - 1}}y = {\tan ^{ - 1}}\dfrac{{x - y}}{{1 + xy}}