Question
Question: If \[y = {\tan ^{ - 1}}\left( {\dfrac{{a\cos x - b\sin x}}{{b\cos x + a\sin x}}} \right)\] then \[\d...
If y=tan−1(bcosx+asinxacosx−bsinx) then dxdy=?
A) ba
B) a−b
C) 1
D) −1
Solution
We will solve this question by using the inverse trigonometric formula tan−1x−tan−1y as shown below:
tan−1x−tan−1y=tan−1[(1+xy)(x−y)] , where x and y are two variables.
Complete step-by-step solution:
Step 1: It is given that y=tan−1(bcosx+asinxacosx−bsinx). By dividing the numerator and denominator of the RHS side of the expression by bcosx, we get:
y=tan−1bcosxbcosx+asinxbcosxacosx−bsinx
Now by dividing and numerator and denominator part of the RHS side of the expression, we get:
⇒y=tan−11+bacosxsinxba−cosxsinx
By putting cosxsinx=tanx in the above expression y=tan−11+bacosxsinxba−cosxsinx , we get:
⇒y=tan−11+batanxba−tanx ……………. (1)
Step 2: Now, by applying the formula of tan−1x−tan−1y=tan−1[(1+xy)(x−y)] in the expression (1), we get:
⇒y=tan−1(ba)−tan−1(tanx) , where x=ba and y=tanx.
We know that tan−1(tanx)=x , (∵tan−1x=tanx1) , substituting this value in the above expression y=tan−1(ba)−tan−1(tanx), we get:
⇒y=tan−1(ba)−x ………… (2)
Step 3: Differentiating the expression (2), for x, we get:
⇒dxdy=0−(1) , (∵tan−1ba=constant)
By simplifying into the RHS side of the above expression, we get:
⇒dxdy=−1
Therefore, if y=tan−1(bcosx+asinxacosx−bsinx), then dxdy=−1.
Option D is the correct answer.
Note: While solving these types of questions students should remember some formulas to make the calculation easy. For example, we have used the formula of tan−1x−tan−1y=tan−1[(1+xy)(x−y)] , explanation of which is as given below for your better understanding:
To prove tan−1x−tan−1y=tan−1[(1+xy)(x−y)] , let tan−1x=A,tan−1y=B.
As we know that tan(A−B)=1−tanAtanBtanA−tanB , so by substituting the values of tan−1x=A,tan−1y=B in this formula, we get:
⇒tan(tan−1x−tan−1y)=1+tan(tan−1x)tan(tan−1y)tan(tan−1x)−tan(tan−1y)
From here, we can write tan(tan−1x)=x and tan(tan−1y)=y because f(f−1a)=a, where f is known as any function. By substituting these values in the above expression, we get:
⇒tan(tan−1x−tan−1y)=1+xyx−y
Now by bringing tanfrom the LHS side to the RHS side of the expression we get:
⇒(tan−1x−tan−1y)=tan−11+xyx−y
It is proved that tan−1x−tan−1y=tan−11+xyx−y