Solveeit Logo

Question

Question: If \(y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right)\), then \(\dfrac{{...

If y=tan1(cot(π2x))y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right), then dydx=\dfrac{{dy}}{{dx}} =

Explanation

Solution

Hint : Here, we cannot directly differentiate y=tan1(cot(π2x))y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right). First of all, we will be using the relation
cot(π2θ)=tanθ tan(π2θ)=cotθ   \Rightarrow \cot \left( {\dfrac{\pi }{2} - \theta } \right) = \tan \theta \\\ \Rightarrow \tan \left( {\dfrac{\pi }{2} - \theta } \right) = \cot \theta \;
And then tan1(tanx)=x{\tan ^{ - 1}}\left( {\tan x} \right) = x. After using these relations, we can easily differentiate the given equation.

Complete step-by-step answer :
In this question, we are given an equation and we need to find its derivative, that is dydx\dfrac{{dy}}{{dx}}.
Given equation is: y=tan1(cot(π2x))y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right) - - - - - - - - - - - - - - - - - - (1)
Now, we cannot differentiate the above equation directly. We need to use some mathematical formulas and relations in order to find the derivative of the given equation.
Now, first of all, we know that cot and tan are complementary to each other. So, we have the relation between them that
cot(π2θ)=tanθ tan(π2θ)=cotθ   \Rightarrow \cot \left( {\dfrac{\pi }{2} - \theta } \right) = \tan \theta \\\ \Rightarrow \tan \left( {\dfrac{\pi }{2} - \theta } \right) = \cot \theta \;
So, therefore equation (1) becomes
y=tan1(tanx)\Rightarrow y = {\tan ^{ - 1}}\left( {\tan x} \right) - - - - - - - - - - (2)
Now, we know another relation that when any trigonometric ratio is multiplied by its inverse, then it will always be equal to its angle. Therefore, we have
tan1(tanx)=x\Rightarrow {\tan ^{ - 1}}\left( {\tan x} \right) = x
Therefore, putting this value in equation (2), we get
y=tan1(tanx)\Rightarrow y = {\tan ^{ - 1}}\left( {\tan x} \right)
y=x\Rightarrow y = x - - - - - - - - - - (3)
Now, we can differentiate the equation directly.
Therefore, on differentiating equation (3), we get
y=x dydx=ddx(x) dydx=1   \Rightarrow y = x \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( x \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 1 \;
Hence, the derivative of y=tan1(cot(π2x))y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right) is equal to 1.
So, the correct answer is “1”.

Note : Here, we can also find the derivative of y=tan1(cot(π2x))y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right) using the above method.
y=tan1(cot(π2x))\Rightarrow y = {\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right)
We know that, ddxtan1x=11+x2\dfrac{d}{{dx}}{\tan ^{ - 1}}x = \dfrac{1}{{1 + {x^2}}}
Therefore,
dydx=ddxtan1(cot(π2x)) dydx=11+cot2(π2x)×ddxcot(π2x)×ddx(x) dydx=1cosec2(π2x)×(cosec2(π2x))(1) dydx=(1)(1) dydx=1   \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\tan ^{ - 1}}\left( {\cot \left( {\dfrac{\pi }{2} - x} \right)} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{1 + {{\cot }^2}\left( {\dfrac{\pi }{2} - x} \right)}} \times \dfrac{d}{{dx}}\cot \left( {\dfrac{\pi }{2} - x} \right) \times \dfrac{d}{{dx}}\left( { - x} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{\cos e{c^2}\left( {\dfrac{\pi }{2} - x} \right)}} \times \left( { - \cos e{c^2}\left( {\dfrac{\pi }{2} - x} \right)} \right)\left( { - 1} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \left( { - 1} \right)\left( { - 1} \right) \\\ \Rightarrow \dfrac{{dy}}{{dx}} = 1 \;