Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=tan1x1x2x+1x2,y = \tan^{-1} \frac{x-\sqrt{1-x^{2}}}{x+\sqrt{1-x^{2}}} , then dydx\frac{dy}{dx} is equal to

A

11x2\frac{1}{1 -x^2}

B

11x2\frac{1}{\sqrt{1 -x^2}}

C

11+x2\frac{1}{1 + x^2}

D

11+x2\frac{1}{\sqrt{1 + x^2}}

Answer

11x2\frac{1}{\sqrt{1 -x^2}}

Explanation

Solution

Put x=cosθx = \cos\theta y=tan1cosθsinθcosθ+sinθ=tan11tanθ1+tanθy = \tan^{-1} \frac{\cos\theta - \sin \theta}{\cos\theta + \sin\theta} =\tan^{-1} \frac{1-\tan\theta}{1+\tan\theta} =tan1tan(π4θ)=\tan^{-1} \tan\left(\frac{\pi}{4} - \theta\right) =π4θ=π4cos1x= \frac{\pi}{4} - \theta = \frac{\pi}{4} -\cos^{-1} x dydx=0(11x2)=11x2\therefore \frac{dy}{dx} = 0 - \left(\frac{1}{\sqrt{1-x^{2}}} \right) = \frac{1}{\sqrt{1-x^{2}}}