Solveeit Logo

Question

Mathematics Question on Differential equations

If y(t)y (t) is a solution of (1+t)dydtty=1(1+t) \frac {dy}{dt}-ty=1 and y(0)=1,y(0)=-1, then y(1) is equal to

A

-0.5

B

e+1/2 e+12e+\frac {1}{2}

C

12-\frac {1}{2}

D

44563

Answer

12-\frac {1}{2}

Explanation

Solution

We begin by determining the integrating factor (IF):

ex: IF =e −∫ t 1+tdt =e −∫ t +11+tdt =et +log(1+t)=1+tet ​.

The sought-after solution can be expressed as y(IF)=∫ QIFdt +C , where Q =11+t ​ is derived from the given equation.

Thus, y(IF)=∫11+t ​⋅1+tetdt +C ,

=∫ etdt +C ,

=− et +C.

Given the initial condition y(0)=−1, we find:

−1⋅(1+0)=− e 0+C ,

−1=−1+C ,

C =0.

Plugging the value of C back in, we have:

y(IF)=− et +0,

=− et.

Evaluating at t =1:

y(IF)=− e −1,

=1e=-\frac {1}{e}

above is example. but here proves that : 12-\frac {1}{2}