Solveeit Logo

Question

Question: If y = \(\sqrt{x + \sqrt{y + \sqrt{x + \sqrt{y + ......\infty}}}}\), then \(\frac{dy}{dx}\)is equal ...

If y = x+y+x+y+......\sqrt{x + \sqrt{y + \sqrt{x + \sqrt{y + ......\infty}}}}, then dydx\frac{dy}{dx}is equal to-

A

y+xy22x\frac{y + x}{y^{2} - 2x}

B

y3x2y22xy1\frac{y^{3} - x}{2y^{2} - 2xy - 1}

C

y3+x2y2x\frac{y^{3} + x}{2y^{2} - x}

D

None

Answer

None

Explanation

Solution

y = x+y+x+y+.............\sqrt{x + \sqrt{y + \sqrt{x + \sqrt{y + ....}}..}}.......\infty y = x+y+y\sqrt{x + \sqrt{y + y}}

⇒ y2 = x +2y\sqrt{2y} [2y\sqrt{2y}= y2 –x]

⇒ 2y. dydx\frac{dy}{dx}= 1 + 22y\frac{2}{\sqrt{2y}}×dydx\frac{dy}{dx}

[2y12y]\left\lbrack 2y - \frac{1}{\sqrt{2y}} \right\rbrack= 1

dydx\frac{dy}{dx}= 2y2y2y1\frac{\sqrt{2y}}{2y\sqrt{2y} - 1}

= y2x2y32xy1\frac{y^{2} - x}{2y^{3} - 2xy - 1}