Solveeit Logo

Question

Question: If \(y = \sqrt{x + \sqrt{x + \sqrt{x + ........\text{to }\infty}}}\) then \(\frac{dy}{dx} =\)...

If y=x+x+x+........to y = \sqrt{x + \sqrt{x + \sqrt{x + ........\text{to }\infty}}} then dydx=\frac{dy}{dx} =

A

x2y1\frac{x}{2y - 1}

B

22y1\frac{2}{2y - 1}

C

12y1\frac{- 1}{2y - 1}

D

12y1\frac{- 1}{2y - 1}

Answer

12y1\frac{- 1}{2y - 1}

Explanation

Solution

y=x+x+x+........to y = \sqrt{x + \sqrt{x + \sqrt{x + ........\text{to }\infty}}}y=x+yy = \sqrt{x + y}y2=x+yy^{2} = x + y

2ydydx=1+dydx2y\frac{dy}{dx} = 1 + \frac{dy}{dx}dydx(2y1)=1\frac{dy}{dx}(2y - 1) = 1dydx=12y1\frac{dy}{dx} = \frac{1}{2y - 1}