Solveeit Logo

Question

Question: If $y = \sqrt{\cos(5x)}$, then $\frac{dy}{dx}$ is:...

If y=cos(5x)y = \sqrt{\cos(5x)}, then dydx\frac{dy}{dx} is:

Answer

5sin(5x)2cos(5x)\frac{-5\sin(5x)}{2\sqrt{\cos(5x)}}

Explanation

Solution

To find the derivative of y=cos(5x)y = \sqrt{\cos(5x)} with respect to xx, we use the chain rule.

The function can be written as y=(cos(5x))1/2y = (\cos(5x))^{1/2}.

We apply the chain rule in multiple steps:

  1. Derivative of the outermost function (square root):
    Let u=cos(5x)u = \cos(5x). Then y=u1/2y = u^{1/2}.
    The derivative of yy with respect to uu is:
    dydu=12u(1/2)1=12u1/2=12u\frac{dy}{du} = \frac{1}{2}u^{(1/2) - 1} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}
    Substituting u=cos(5x)u = \cos(5x) back, we get:
    dydu=12cos(5x)\frac{dy}{du} = \frac{1}{2\sqrt{\cos(5x)}}

  2. Derivative of the inner function (cosine):
    We need to find the derivative of u=cos(5x)u = \cos(5x) with respect to xx.
    Let v=5xv = 5x. Then u=cos(v)u = \cos(v).
    The derivative of uu with respect to vv is:
    dudv=sin(v)\frac{du}{dv} = -\sin(v)
    Substituting v=5xv = 5x back, we get:
    dudv=sin(5x)\frac{du}{dv} = -\sin(5x)

  3. Derivative of the innermost function (linear term):
    We need to find the derivative of v=5xv = 5x with respect to xx.
    dvdx=5\frac{dv}{dx} = 5

  4. Combine using the chain rule:
    According to the chain rule, dydx=dydududvdvdx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dv} \cdot \frac{dv}{dx}.
    Substituting the derivatives we found:
    dydx=(12cos(5x))(sin(5x))(5)\frac{dy}{dx} = \left(\frac{1}{2\sqrt{\cos(5x)}}\right) \cdot (-\sin(5x)) \cdot (5)

    Multiply these terms together:
    dydx=5sin(5x)2cos(5x)\frac{dy}{dx} = \frac{-5\sin(5x)}{2\sqrt{\cos(5x)}}

The final answer is 5sin(5x)2cos(5x)\frac{-5\sin(5x)}{2\sqrt{\cos(5x)}}.

Explanation of the solution:

The derivative of y=cos(5x)y = \sqrt{\cos(5x)} is found using the chain rule.

  1. Differentiate the square root function: ddx(f(x))=12f(x)f(x)\frac{d}{dx}(\sqrt{f(x)}) = \frac{1}{2\sqrt{f(x)}} \cdot f'(x).
    Here, f(x)=cos(5x)f(x) = \cos(5x). So, the first step gives 12cos(5x)ddx(cos(5x))\frac{1}{2\sqrt{\cos(5x)}} \cdot \frac{d}{dx}(\cos(5x)).
  2. Differentiate cos(5x)\cos(5x): This is another application of the chain rule.
    ddx(cos(ax))=asin(ax)\frac{d}{dx}(\cos(ax)) = -a\sin(ax).
    For cos(5x)\cos(5x), a=5a=5, so ddx(cos(5x))=5sin(5x)\frac{d}{dx}(\cos(5x)) = -5\sin(5x).
  3. Combine the results: Multiply the two parts obtained in steps 1 and 2.
    dydx=12cos(5x)(5sin(5x))=5sin(5x)2cos(5x)\frac{dy}{dx} = \frac{1}{2\sqrt{\cos(5x)}} \cdot (-5\sin(5x)) = \frac{-5\sin(5x)}{2\sqrt{\cos(5x)}}.