Solveeit Logo

Question

Question: If $y = \sqrt{4-8x}$ then value of $y \cdot \frac{dy}{dx}$ is...

If y=48xy = \sqrt{4-8x} then value of ydydxy \cdot \frac{dy}{dx} is

A

-4

B

4

C

8

D

-8

Answer

-4

Explanation

Solution

To find the value of ydydxy \cdot \frac{dy}{dx}, we are given the function y=48xy = \sqrt{4-8x}.

Method 1: Direct Differentiation

  1. Find dydx\frac{dy}{dx}:

Given y=48xy = \sqrt{4-8x}. We can write this as y=(48x)1/2y = (4-8x)^{1/2}. Using the chain rule, dydx=12(48x)(1/2)1ddx(48x)\frac{dy}{dx} = \frac{1}{2}(4-8x)^{(1/2)-1} \cdot \frac{d}{dx}(4-8x).

dydx=12(48x)1/2(8)\frac{dy}{dx} = \frac{1}{2}(4-8x)^{-1/2} \cdot (-8).

dydx=1248x(8)\frac{dy}{dx} = \frac{1}{2\sqrt{4-8x}} \cdot (-8).

dydx=8248x\frac{dy}{dx} = \frac{-8}{2\sqrt{4-8x}}.

dydx=448x\frac{dy}{dx} = \frac{-4}{\sqrt{4-8x}}.

  1. Calculate ydydxy \cdot \frac{dy}{dx}:

Substitute the expressions for yy and dydx\frac{dy}{dx}:

ydydx=(48x)(448x)y \cdot \frac{dy}{dx} = (\sqrt{4-8x}) \cdot \left(\frac{-4}{\sqrt{4-8x}}\right).

The term 48x\sqrt{4-8x} cancels out.

ydydx=4y \cdot \frac{dy}{dx} = -4.

Method 2: Implicit Differentiation

  1. Square both sides of the equation for yy:

Given y=48xy = \sqrt{4-8x}.

Squaring both sides gives y2=48xy^2 = 4-8x.

  1. Differentiate both sides with respect to xx:

Differentiate y2y^2 with respect to xx using the chain rule: ddx(y2)=2ydydx\frac{d}{dx}(y^2) = 2y \frac{dy}{dx}.

Differentiate 48x4-8x with respect to xx: ddx(48x)=08=8\frac{d}{dx}(4-8x) = 0 - 8 = -8.

So, 2ydydx=82y \frac{dy}{dx} = -8.

  1. Solve for ydydxy \cdot \frac{dy}{dx}:

Divide both sides by 2:

ydydx=82y \cdot \frac{dy}{dx} = \frac{-8}{2}.

ydydx=4y \cdot \frac{dy}{dx} = -4.

Both methods yield the same result.