Question
Question: If \(y = \sqrt {x + \sqrt {y + \sqrt {x + \sqrt {y + .........\infty } } } } \) , then show that \(\...
If y=x+y+x+y+.........∞ , then show that dxdy=2y3−2xy−1y2−x.
Solution
In order to solve the equation, check that where the term y has repeated and, then mark them as y , we will get a shorter equation. Then to remove the square root, square both the sides. Then differentiate the terms with respect to x and separate the variables on one side.
Formula used:
1. dxdyn=nyn−1dxdy
2. dxdxn=nxn−1
3. dxd(uv)=udxd(v)+vdxd(u)
Complete step by step solution:
We are given the equation y=x+y+x+y+.........∞.
We can see that after the second root, from the third root y is getting repeated, as y=x+y+x+y+.........∞.
So, writing x+y+.........∞ as y , we get the equation as:
y=x+y+x+y+.........∞ ⇒y=x+y+y
It can be written as:
y=x+y+y ⇒y=x+2y
Squaring both the sides, in order to remove the square root, as we know that (x)2=x.
So,
y=x+2y ⇒(y)2=(x+2y)2 ⇒y2=x+2y
Subtracting both the sides of the above equation by x:
y2=x+2y ⇒y2−x=x+2y−x ⇒y2−x=2y
Since, we have one more square root on the right side, so squaring both the sides, and we get:
y2−x=2y ⇒(y2−x)2=(2y)2 ⇒(y2−x)2=2y
Opening the brackets using (a−b)2=a2+b2−2ab.
(y2−x)2=2y =>y4+x2−2xy2=2y
Subtracting both the sides by 2y , we get:
y4+x2−2xy2=2y ⇒y4+x2−2xy2−2y=2y−2y ⇒y4+x2−2xy2−2y=0
Since, we obtained a sorted, so differentiating both the sides of the above equation with respect to x :
Splitting the terms for differentiation:
dxd(y4+x2−2xy2−2y)=0 ⇒dxdy4+dxdx2−dxd(2xy2)−dxd(2y)=0Taking out the constants from the parenthesis:
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - \dfrac{{d\left( {2x{y^2}} \right)}}{{dx}} - \dfrac{{d\left( {2y} \right)}}{{dx}} = 0 \\\ \Rightarrow \dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\\ $$ …….(A) We would solve each operand separately: Starting with $$\dfrac{{d{y^4}}}{{dx}}$$. Since, we know that $$\dfrac{{d{y^n}}}{{dx}} = n{y^{n - 1}}\dfrac{{dy}}{{dx}}$$. So, from this we get: $$\dfrac{{d{y^4}}}{{dx}} = 4{y^{4 - 1}}\dfrac{{dy}}{{dx}} = 4{y^3}\dfrac{{dy}}{{dx}}$$. ………………..(1) Then we have $$\dfrac{{d{x^2}}}{{dx}}$$ : Since, we know that $$\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$$. So, from this we get: $$\dfrac{{d{x^2}}}{{dx}} = 2{x^{2 - 1}} = 2x$$. ………………..(2) Then we have $$\dfrac{{d\left( {x{y^2}} \right)}}{{dx}}$$ : Since, we know that it is in product form, and it can differentiated as $$\dfrac{{d\left( {uv} \right)}}{{dx}} = u\dfrac{{d\left( v \right)}}{{dx}} + v\dfrac{{d\left( u \right)}}{{dx}}$$. Comparing $$\left( {uv} \right)$$ with $$\left( {x{y^2}} \right)$$, we get $$u = x,v = {y^2}$$ So, differentiating it from the product rule, we get:\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x\dfrac{{d\left( {{y^2}} \right)}}{{dx}} + {y^2}\dfrac{{d\left( x \right)}}{{dx}} \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = x.2y\dfrac{{dy}}{{dx}} + {y^2}\left( 1 \right) \\
\Rightarrow \dfrac{{d\left( {x{y^2}} \right)}}{{dx}} = 2xy\dfrac{{dy}}{{dx}} + {y^2} \\
\dfrac{{d{y^4}}}{{dx}} + \dfrac{{d{x^2}}}{{dx}} - 2\dfrac{{d\left( {x{y^2}} \right)}}{{dx}} - 2\dfrac{{d\left( y \right)}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
4{y^3}\dfrac{{dy}}{{dx}} + 2x - 2\left( {2xy\dfrac{{dy}}{{dx}} + {y^2}} \right) - 2\dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow 4{y^3}\dfrac{{dy}}{{dx}} + 2x - 4xy\dfrac{{dy}}{{dx}} - 2{y^2} - 2\dfrac{{dy}}{{dx}} = 0 \\
2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right) = 0 \\
\Rightarrow \dfrac{{2\left( {2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}}} \right)}}{2} = 0 \\
\Rightarrow 2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
2{y^3}\dfrac{{dy}}{{dx}} + x - 2xy\dfrac{{dy}}{{dx}} - {y^2} - \dfrac{{dy}}{{dx}} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} = 0 \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} + x - {y^2} + {y^2} - x = {y^2} - x \\
\Rightarrow \left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}} = {y^2} - x \\
\dfrac{{\left( {2{y^3} - 2xy - 1} \right)\dfrac{{dy}}{{dx}}}}{{\left( {2{y^3} - 2xy - 1} \right)}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\
\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{{y^2} - x}}{{\left( {2{y^3} - 2xy - 1} \right)}} \\