Question
Mathematics Question on Statistics
If y=x+y+x+y+..... then dxdy
A
y2−2xy+x
B
2y2−2xy−1y3−x
C
2y2−xy3+x
D
2y3−2xy−1y2−x
Answer
2y3−2xy−1y2−x
Explanation
Solution
y=x+y+x+y+....
then, y can be rewritten as,
y=x+y+y=x+2y ......(i)
Squaring (i) both sides, we get
y2=x+2y⇒y2−x=2y ...... (ii)
Again squaring (ii) both sides, we get
y4+x2−2xy2=2y ........(iii)
Differentiating (iii) w.r.t. 'x', we have
⇒4y3dxdy+2x−2(y2+x.2ydxdy)=dx2dy
⇒4y3dxdy−4xydxdy=dx2dy=−2x+2y2
⇒(2y3−2xy−1)dxdy=y2−x
⇒dxdy=2y3−2xy−1y2−x