Solveeit Logo

Question

Question: If \(y=\sqrt{\dfrac{1-x}{1+x}}\) , prove that \(\left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}+y=0\)....

If y=1x1+xy=\sqrt{\dfrac{1-x}{1+x}} , prove that (1x2)dydx+y=0\left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}+y=0.

Explanation

Solution

Problems like these can be solved by multiplying (1x)\sqrt{\left( 1-x \right)} to both the numerator and denominator of the fraction in the right-hand side of given equation and further simplifying. After, getting the simplified expression of yy we differentiate both the sides of the equation using formula of differentiation ddx(uv)=vddx(u)uddx(v)v2\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}\left( u \right)-u\dfrac{d}{dx}\left( v \right)}{{{v}^{2}}} . Completing the differentiation and some simplifications we will reach to the desired differential equation.

Complete step-by-step answer:
The given expression we have is
y=1x1+xy=\sqrt{\dfrac{1-x}{1+x}}
We further multiply (1x)\sqrt{\left( 1-x \right)} to both the nominator and denominator of the fraction in the right-hand side of the above equation as shown below
y=(1x)(1x)(1+x)(1x)\Rightarrow y=\sqrt{\dfrac{\left( 1-x \right)\left( 1-x \right)}{\left( 1+x \right)\left( 1-x \right)}}
y=1x1x2.....(1)\Rightarrow y=\dfrac{1-x}{\sqrt{1-{{x}^{2}}}}.....\left( 1 \right)
Now, while differentiating both the sides of the above equation we must use the formula for differentiating a function in the right-hand side
ddx(uv)=vddx(u)uddx(v)v2\Rightarrow \dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}\left( u \right)-u\dfrac{d}{dx}\left( v \right)}{{{v}^{2}}}

Applying this formula for differentiating equation 11 we get
dydx=1x2ddx(1x)(1x)ddx(1x2)1x2\Rightarrow \dfrac{dy}{dx}=\dfrac{\sqrt{1-{{x}^{2}}}\dfrac{d}{dx}\left( 1-x \right)-\left( 1-x \right)\dfrac{d}{dx}\left( \sqrt{1-{{x}^{2}}} \right)}{1-{{x}^{2}}}
Further, doing all the differentiations we get
\Rightarrow \dfrac{dy}{dx}=\dfrac{\sqrt{1-{{x}^{2}}}\left( -1 \right)-\left( 1-x \right)\left\\{ \dfrac{1}{2}{{\left( 1-{{x}^{2}} \right)}^{-\dfrac{1}{2}}}\left( -2x \right) \right\\}}{1-{{x}^{2}}}

Simplifying the right-hand side of the above equation we get
dydx=x(1x)(1x2)(1x2)1x2\Rightarrow \dfrac{dy}{dx}=\dfrac{x\left( 1-x \right)-\left( 1-{{x}^{2}} \right)}{\left( 1-{{x}^{2}} \right)\sqrt{1-{{x}^{2}}}}
Omitting the brackets of the numerator of right-hand side of the above equation we get
dydx=xx21+x2(1x2)1x2\Rightarrow \dfrac{dy}{dx}=\dfrac{x-{{x}^{2}}-1+{{x}^{2}}}{\left( 1-{{x}^{2}} \right)\sqrt{1-{{x}^{2}}}}
Summing up the like terms the equation becomes
dydx=x1(1x2)1x2\Rightarrow \dfrac{dy}{dx}=\dfrac{x-1}{\left( 1-{{x}^{2}} \right)\sqrt{1-{{x}^{2}}}}
Taking 1-1 common from the numerator of the right-hand side of the above equation
dydx=1x(1x2)1x2\Rightarrow \dfrac{dy}{dx}=-\dfrac{1-x}{\left( 1-{{x}^{2}} \right)\sqrt{1-{{x}^{2}}}}
Multiplying both the right and left-hand side of the above equation with 1x2\sqrt{1-{{x}^{2}}} we get

(1x2)dydx=1x1x2\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}=-\dfrac{1-x}{\sqrt{1-{{x}^{2}}}}
Now, substituting the value of yy in the above expression in place of 1x1x2\dfrac{1-x}{\sqrt{1-{{x}^{2}}}} we get
(1x2)dydx=y\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}=-y
Adding yy to both the sides of the above equation we get
(1x2)dydx+y=y+y\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}+y=-y+y
(1x2)dydx+y=0\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}+y=0
Thus, we can prove (1x2)dydx+y=0\left( 1-{{x}^{2}} \right)\dfrac{dy}{dx}+y=0 , if y=1x1+xy=\sqrt{\dfrac{1-x}{1+x}} .

Note: As the given problem contains too complex an expression having square roots and fractions, we should be very careful while differentiating them. Most of the time, squaring on both sides makes the solution easier and helps us to avoid complex forms. The problem can also be solved by taking natural logarithm on both sides and then differentiating on both sides.