Solveeit Logo

Question

Question: If y = sin<sup>–1</sup>\(\frac{1}{\sqrt{1 + x^{2}}}\)+ tan<sup>–1</sup>\(\left( \frac{\sqrt{1 + x^{2...

If y = sin–111+x2\frac{1}{\sqrt{1 + x^{2}}}+ tan–1(1+x21x)\left( \frac{\sqrt{1 + x^{2}} - 1}{x} \right) , then the dydx\frac{dy}{dx}

equals –

A

12(1+x2)\frac{1}{2(1 + x^{2})}

B

12(1+x2)\frac{1}{2(1 + x^{2})}

C

0

D

None of these

Answer

12(1+x2)\frac{1}{2(1 + x^{2})}

Explanation

Solution

Put x = tan θ

y = sin–1 1secθ\frac{1}{\sec\theta}+ tan–1 (secθ1tanθ)\left( \frac{\sec\theta - 1}{\tan\theta} \right)

⇒ y = (π2θ)\left( \frac{\pi}{2} - \theta \right)+ tan–1 (1cosθsinθ)\left( \frac{1 - \cos\theta}{\sin\theta} \right)

⇒ y = π2\frac{\pi}{2} –q + θ2\frac{\theta}{2}