Solveeit Logo

Question

Question: If \(y = (\sin x)^{\tan x}\), then \(\frac{dy}{dx}\) is equal to...

If y=(sinx)tanxy = (\sin x)^{\tan x}, then dydx\frac{dy}{dx} is equal to

A

(sinx)tanx.(1+sec2x.logsinx)(\sin x)^{\tan x}.(1 + \sec^{2}x.{logsin}x)

B

tanx.(sinx)tanx1.cosx\tan x.(\sin x)^{\tan x - 1}.\cos x

C

(sinx)tanx.,sec2xlogsinx(\sin x)^{\tan x}.,\sec^{2}x{logsin}x

D

tanx.(sinx)tanx1\tan x.(\sin x)^{\tan x - 1}

Answer

(sinx)tanx.(1+sec2x.logsinx)(\sin x)^{\tan x}.(1 + \sec^{2}x.{logsin}x)

Explanation

Solution

Given y=(sinx)tanxy = (\sin x)^{\tan x}

logy=tanx.logsinxy = \tan x.{logsin}x

Differentiating w.r.t. x, 1y.dydx=tanx.cotx+logsinx.sec2x\frac{1}{y}.\frac{dy}{dx} = \tan x.\cot x + {logsin}x.\sec^{2}x

dydx=(sinx)tanx[1+logsinx.sec2x]\frac{dy}{dx} = (\sin x)^{\tan x}\lbrack 1 + {logsin}x.\sec^{2}x\rbrack.