Solveeit Logo

Question

Question: If y = sin x, \[{{y}_{n}}=\dfrac{{{d}^{n}}\left( \sin x \right)}{d{{x}^{n}}}\] then find the value o...

If y = sin x, yn=dn(sinx)dxn{{y}_{n}}=\dfrac{{{d}^{n}}\left( \sin x \right)}{d{{x}^{n}}} then find the value of yy1y2 y3y4y5 y6y7y8 =?\left| \begin{matrix} y & {{y}_{1}} & {{y}_{2}} \\\ {{y}_{3}} & {{y}_{4}} & {{y}_{5}} \\\ {{y}_{6}} & {{y}_{7}} & {{y}_{8}} \\\ \end{matrix} \right|=?
(a) – sin x
(b) 0
(c) sin x
(d) cos x

Explanation

Solution

Use the formula for nth{{n}^{th}} differentiation of sin x given by dn(sinx)dxn=sin(x+12nx),\dfrac{{{d}^{n}}\left( \sin x \right)}{d{{x}^{n}}}=\sin \left( x+\dfrac{1}{2}nx \right), where n = 1, 2, …..n, to evaluate the values of y1,y2,y3.....y8.{{y}_{1}},{{y}_{2}},{{y}_{3}}.....{{y}_{8}}. Then substitute these values in the determinant and expand it to get the answer.

Complete step by step answer:
We have been given that y = sin x and yn=dn(sinx)dxn.{{y}_{n}}=\dfrac{{{d}^{n}}\left( \sin x \right)}{d{{x}^{n}}}. Here, yn'{{y}_{n}}' denotes the nth{{n}^{th}} differentiation of sin x. We know that the nth{{n}^{th}} differentiation of sin x is given by the formula dn(sinx)dxn=sin(x+12nx),\dfrac{{{d}^{n}}\left( \sin x \right)}{d{{x}^{n}}}=\sin \left( x+\dfrac{1}{2}nx \right), where n = 1, 2, 3…..n. Therefore, substituting the values of n = 1, 2, 3, ….8 one by one to determine the values of y1,y2,y3,...yn,{{y}_{1}},{{y}_{2}},{{y}_{3}},...{{y}_{n}}, we get,
(i)y1=sin(x+π2)=cosx\left( i \right){{y}_{1}}=\sin \left( x+\dfrac{\pi }{2} \right)=\cos x
(ii)y2=sin(x+2π2)\left( ii \right){{y}_{2}}=\sin \left( x+\dfrac{2\pi }{2} \right)
y2=sin(x+π)\Rightarrow {{y}_{2}}=\sin \left( x+\pi \right)
y2=sinx\Rightarrow {{y}_{2}}=-\sin x
(iii)y3=sin(x+3π2)=cosx\left( iii \right){{y}_{3}}=\sin \left( x+\dfrac{3\pi }{2} \right)=-\cos x
(iv)y4=sin(x+4π2)\left( iv \right){{y}_{4}}=\sin \left( x+\dfrac{4\pi }{2} \right)
y4=sin(x+2π)\Rightarrow {{y}_{4}}=\sin \left( x+2\pi \right)
y4=sinx\Rightarrow {{y}_{4}}=\sin x
(v)y5=sin(x+5π2)=cosx\left( v \right){{y}_{5}}=\sin \left( x+\dfrac{5\pi }{2} \right)=\cos x
(vi)y6=sin(x+6π2)\left( vi \right){{y}_{6}}=\sin \left( x+\dfrac{6\pi }{2} \right)
y6=sin(x+3π)\Rightarrow {{y}_{6}}=\sin \left( x+3\pi \right)
y6=sinx\Rightarrow {{y}_{6}}=-\sin x
(vii)y7=sin(x+7π2)=cosx\left( vii \right){{y}_{7}}=\sin \left( x+\dfrac{7\pi }{2} \right)=-\cos x
(viii)y8=sin(x+8π2)\left( viii \right){{y}_{8}}=\sin \left( x+\dfrac{8\pi }{2} \right)
y8=sin(x+4π)\Rightarrow {{y}_{8}}=\sin \left( x+4\pi \right)
y8=sinx\Rightarrow {{y}_{8}}=\sin x
Now, let us assume the value of the determinant yy1y2 y3y4y5 y6y7y8 \left| \begin{matrix} y & {{y}_{1}} & {{y}_{2}} \\\ {{y}_{3}} & {{y}_{4}} & {{y}_{5}} \\\ {{y}_{6}} & {{y}_{7}} & {{y}_{8}} \\\ \end{matrix} \right| as A. Therefore, substituting the values of y1,y2,y3,....y8,{{y}_{1}},{{y}_{2}},{{y}_{3}},....{{y}_{8}}, we get,

\sin x & \cos x & -\sin x \\\ -\cos x & \sin x & \cos x \\\ -\sin x & -\cos x & \sin x \\\ \end{matrix} \right|$$ Expanding the determinant, we get, $$\begin{aligned} & \Rightarrow A=\sin x\left[ \sin x\times \sin x-\cos x\times \left( -\cos x \right) \right]-\cos x\left[ \left( -\cos x \right)\times \sin x-\left( -\sin x \right)\times \cos x \right] \\\ & +\left( -\sin x \right)\left[ \left( -\cos x \right)\times \left( -\cos x \right)-\left( -\sin x \right)\left( \sin x \right) \right] \\\ \end{aligned}$$ Here, we have expanded the determinant using the first row. $$\Rightarrow A=\sin x\left[ {{\sin }^{2}}x+{{\cos }^{2}}x \right]-\cos x\left[ -\sin x\cos x+\sin x\cos x \right]-\sin x\left[ {{\cos }^{2}}x+{{\sin }^{2}}x \right]$$ Cancelling the like terms and using the identity $${{\cos }^{2}}x+{{\sin }^{2}}x=1,$$ we get, $$\Rightarrow A=\sin x\times 1-\cos x\times 0-\sin x\times 1$$ $$\Rightarrow A=\sin x-\sin x$$ $$\Rightarrow A=0$$ **So, the correct answer is “Option b”.** **Note:** One may note that we need not require to find the $${{n}^{th}}$$ differentiation using the given formula. If we do not remember the formula, then also we can find all the differentiation values step by step. We can write the expression of each step of differentiation in terms of y and $${{y}_{1}}$$ and then we can easily find the determinant value. Note that there is a very easy method to determine the answer if the options are given just like in the above question. We can substitute x = 0 or $$x=\dfrac{\pi }{2}$$ in $$y,{{y}_{1}}{{y}_{2}},...{{y}_{8}}.$$ It will make our expression of the determinant easier as we already know the numerical values of $$\sin {{0}^{\circ }},\cos {{0}^{\circ }},\sin \dfrac{\pi }{2},\cos \dfrac{\pi }{2}.$$