Question
Question: If y = sin x, \[{{y}_{n}}=\dfrac{{{d}^{n}}\left( \sin x \right)}{d{{x}^{n}}}\] then find the value o...
If y = sin x, yn=dxndn(sinx) then find the value of y y3 y6 y1y4y7y2y5y8=?
(a) – sin x
(b) 0
(c) sin x
(d) cos x
Solution
Use the formula for nth differentiation of sin x given by dxndn(sinx)=sin(x+21nx), where n = 1, 2, …..n, to evaluate the values of y1,y2,y3.....y8. Then substitute these values in the determinant and expand it to get the answer.
Complete step by step answer:
We have been given that y = sin x and yn=dxndn(sinx). Here, ′yn′ denotes the nth differentiation of sin x. We know that the nth differentiation of sin x is given by the formula dxndn(sinx)=sin(x+21nx), where n = 1, 2, 3…..n. Therefore, substituting the values of n = 1, 2, 3, ….8 one by one to determine the values of y1,y2,y3,...yn, we get,
(i)y1=sin(x+2π)=cosx
(ii)y2=sin(x+22π)
⇒y2=sin(x+π)
⇒y2=−sinx
(iii)y3=sin(x+23π)=−cosx
(iv)y4=sin(x+24π)
⇒y4=sin(x+2π)
⇒y4=sinx
(v)y5=sin(x+25π)=cosx
(vi)y6=sin(x+26π)
⇒y6=sin(x+3π)
⇒y6=−sinx
(vii)y7=sin(x+27π)=−cosx
(viii)y8=sin(x+28π)
⇒y8=sin(x+4π)
⇒y8=sinx
Now, let us assume the value of the determinant y y3 y6 y1y4y7y2y5y8 as A. Therefore, substituting the values of y1,y2,y3,....y8, we get,