Question
Question: If \( y=\sin x\sin 2x\sin 3x........\sin nx \) , then \( y' \) is A. \( \sum\limits_{k=1}^{n}{k\ta...
If y=sinxsin2xsin3x........sinnx , then y′ is
A. k=1∑nktankx
B. yk=1∑nkcotkx
C. yk=1∑nktankx
D. k=1∑ncotkx
Solution
Hint : We solve the given equation using the identity formula of logarithm where the base of ln is always e . The first step would be to take a summation form. Then we first define the derivative rule and how the differentiation of function works.
Complete step-by-step answer :
We have y=sinxsin2xsin3x........sinnx .
We take logarithm both sides to use the form log(ab)=loga+logb
logy=log(sinxsin2xsin3x........sinnx)=log(sinx)+log(sin2x)+log(sin3x).....+log(sinnx)
We differentiate the given function logy=log(sinx)+log(sin2x)+.....+log(sinnx) with respect to x using the chain rule.
We now discuss the multiplication process of two functions where f(x)=u(x)v(x)
Differentiating f(x)=uv, we get dxd[f(x)]=dxd[uv]=udxdv+vdxdu.