Solveeit Logo

Question

Question: If \[y = \sin x + {e^x}\], then \[\dfrac{{{d^2}x}}{{d{y^2}}}\] A. \[\dfrac{{\left( {\sin x - {e^x}...

If y=sinx+exy = \sin x + {e^x}, then d2xdy2\dfrac{{{d^2}x}}{{d{y^2}}}
A. (sinxex)(cosx+ex)3\dfrac{{\left( {\sin x - {e^x}} \right)}}{{{{\left( {\cos x + {e^x}} \right)}^3}}}
B. (sinx+ex)1{\left( { - \sin x + {e^x}} \right)^{ - 1}}
C. (sinxex)(cosx+ex)2\dfrac{{\left( {\sin x - {e^x}} \right)}}{{{{\left( {\cos x + {e^x}} \right)}^2}}}
D. None of these

Explanation

Solution

Here, the given question. We have to find the derivative or differentiated term of the function. For this, first consider function yy, then differentiate yy with respect to xx and again or second time differentiate the function with respect to yy term by using a standard differentiation formula of trigonometric and exponential function and use chain rule for differentiation. And on further simplification we get the required differentiation value.
Formula used:
Here in this question, we used some standard differentiation formula i.e.,
ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x
ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x
ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}
ddx(1x)=1x2\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}

Complete step by step answer:
The differentiation of a function is defined as the derivative or rate of change of a function. The function is said to be differentiable if the limit exists.
The Chain Rule is a formula for computing the derivative of the composition of two or more functions.
The chain rule expressed as dydx=dydududx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \cdot \dfrac{{du}}{{dx}}
Consider the given function yy
y=sinx+ex\Rightarrow \,\,\,\,y = \sin x + {e^x}---------- (1)
Differentiate function yy with respect to xx
ddx(y)=ddx(sinx+ex)\Rightarrow \,\,\,\,\dfrac{d}{{dx}}\left( y \right) = \dfrac{d}{{dx}}\left( {\sin x + {e^x}} \right)
dydx=ddx(sinx)+ddx(ex)\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left( {\sin x} \right) + \dfrac{d}{{dx}}\left( {{e^x}} \right)
On differentiating using a formula ddx(sinx)=cosx\dfrac{d}{{dx}}\left( {\sin x} \right) = \cos x and ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}, then we have
dydx=cosx+ex\Rightarrow \,\,\,\,\dfrac{{dy}}{{dx}} = \cos x + {e^x} -----(2)
Now, to find the d2xdy2\dfrac{{{d^2}x}}{{d{y^2}}}. Express equation in terms of dxdy\dfrac{{dx}}{{dy}} by taking reciprocal.
On taking reciprocal, then equation (2) becomes
dxdy=1cosx+ex\Rightarrow \,\,\,\,\dfrac{{dx}}{{dy}} = \dfrac{1}{{\cos x + {e^x}}} ----(3)
Again, differentiate with respect to yy
dxdy=1cosx+ex\Rightarrow \,\,\,\,\dfrac{{dx}}{{dy}} = \dfrac{1}{{\cos x + {e^x}}}
ddy(dxdy)=ddy(1cosx+ex)\Rightarrow \,\,\,\,\dfrac{d}{{dy}}\left( {\dfrac{{dx}}{{dy}}} \right) = \dfrac{d}{{dy}}\left( {\dfrac{1}{{\cos x + {e^x}}}} \right)
On differentiating using a formula ddx(1x)=1x2\dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}, and then by chain rule we have
d2xdy2=1(cosx+ex)2ddy(cosx+ex)\Rightarrow \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{ - 1}}{{{{\left( {\cos x + {e^x}} \right)}^2}}}\dfrac{d}{{dy}}\left( {\cos x + {e^x}} \right)
d2xdy2=1(cosx+ex)2[ddy(cosx)+ddy(ex)]\Rightarrow \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{ - 1}}{{{{\left( {\cos x + {e^x}} \right)}^2}}}\left[ {\dfrac{d}{{dy}}\left( {\cos x} \right) + \dfrac{d}{{dy}}\left( {{e^x}} \right)} \right]
We know that ddx(cosx)=sinx\dfrac{d}{{dx}}\left( {\cos x} \right) = - \sin x and ddx(ex)=ex\dfrac{d}{{dx}}\left( {{e^x}} \right) = {e^x}, on applying we have
d2xdy2=1(cosx+ex)2[sinxdxdy+exdxdy]\Rightarrow \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{ - 1}}{{{{\left( {\cos x + {e^x}} \right)}^2}}}\left[ { - \sin x\dfrac{{dx}}{{dy}} + {e^x}\dfrac{{dx}}{{dy}}} \right]
d2xdy2=1(cosx+ex)2(sinx+ex)dxdy\Rightarrow \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{ - 1}}{{{{\left( {\cos x + {e^x}} \right)}^2}}}\left( { - \sin x + {e^x}} \right)\dfrac{{dx}}{{dy}}
d2xdy2=(sinx+ex)(cosx+ex)2dxdy\Rightarrow \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{ - \left( { - \sin x + {e^x}} \right)}}{{{{\left( {\cos x + {e^x}} \right)}^2}}} \cdot \dfrac{{dx}}{{dy}}
Substitute dxdy\dfrac{{dx}}{{dy}} by using equation (3), then
d2xdy2=(sinx+ex)(cosx+ex)2×1cosx+ex\Rightarrow \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{ - \left( { - \sin x + {e^x}} \right)}}{{{{\left( {\cos x + {e^x}} \right)}^2}}} \times \dfrac{1}{{\cos x + {e^x}}}
On simplification, we get
d2xdy2=(sinxex)(cosx+ex)3\therefore \,\,\,\,\dfrac{{{d^2}x}}{{d{y^2}}} = \dfrac{{\left( {\sin x - {e^x}} \right)}}{{{{\left( {\cos x + {e^x}} \right)}^3}}}
Hence, it’s a required solution.

So, the correct answer is “Option A”.

Note: The student must know about the differentiation formulas for the trigonometric, exponential, algebraic, logarithm functions and these differentiation formulas are standard. If the function is complex, we have to use the chain rule differentiation. It makes it easy to find out the differentiated term.