Solveeit Logo

Question

Question: If y = sin (sin x) and \(\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx}\) tan x + ѓ(x) = 0, then ѓ(x) equals...

If y = sin (sin x) and d2ydx2+dydx\frac{d^{2}y}{dx^{2}} + \frac{dy}{dx} tan x + ѓ(x) = 0, then ѓ(x) equals

A

sin2 x sin (cos x)

B

sin2 x cos (sin x)

C

cos2 x sin (cos x)

D

cos2 x sin (sin x)

Answer

cos2 x sin (sin x)

Explanation

Solution

dydx\frac{dy}{dx} = cos (sin x) . cos x

\ d2ydx2\frac{d^{2}y}{dx^{2}} = – cos (sin x) sin x + cos x (– sin (sin x)) cos x

̃ d2ydx2\frac{d^{2}y}{dx^{2}} + dydx\frac{dy}{dx} tan x = – cos (sin x) sin x – cos2 x sin

(sin x) + cos (sin x) sin x

= – cos2 x sin (sin x)

̃ d2ydx2\frac{d^{2}y}{dx^{2}}+ dydx\frac{dy}{dx} tan x + cos2 x sin (sin x) = 0

̃ ƒ(x) = cos2x sin (sin x).