Solveeit Logo

Question

Question: If \(y = \sin mx\), then the value of the determinant\(\left| \begin{matrix} y & y_{1} & y_{2} \\ y_...

If y=sinmxy = \sin mx, then the value of the determinantyy1y2y3y4y5y6y7y8\left| \begin{matrix} y & y_{1} & y_{2} \\ y_{3} & y_{4} & y_{5} \\ y_{6} & y_{7} & y_{8} \end{matrix} \right|, where yn=dnydxny_{n} = \frac{d^{n}y}{dx^{n}} is

A

m9m^{9}

B

m2m^{2}

C

m3m^{3}

D

None of these

Answer

None of these

Explanation

Solution

$\left| \begin{matrix} y & y_{1} & y_{2} \ y_{3} & y_{4} & y_{5} \ y_{6} & y_{7} & y_{8} \end{matrix} \right| = \left| \begin{matrix} \sin mx & m\cos mx & - m^{2}\sin mx \

  • m^{3}\cos mx & m^{4}\sin mx & m^{5}\cos mx \
  • m^{6}\sin mx & - m^{7}\cos mx & m^{8}\sin mx \end{matrix} \right|TakingTaking - m^{6}commonfromcommon from R_{3},R_{1}andandR_{3}$ becomes

identical. Hence the value of determinant is zero.