Question
Question: If \(y = \sin mx\), then the value of the determinant\(\left| \begin{matrix} y & y_{1} & y_{2} \\ y_...
If y=sinmx, then the value of the determinantyy3y6y1y4y7y2y5y8, where yn=dxndny is
A
m9
B
m2
C
m3
D
None of these
Answer
None of these
Explanation
Solution
$\left| \begin{matrix} y & y_{1} & y_{2} \ y_{3} & y_{4} & y_{5} \ y_{6} & y_{7} & y_{8} \end{matrix} \right| = \left| \begin{matrix} \sin mx & m\cos mx & - m^{2}\sin mx \
- m^{3}\cos mx & m^{4}\sin mx & m^{5}\cos mx \
- m^{6}\sin mx & - m^{7}\cos mx & m^{8}\sin mx \end{matrix} \right|Taking- m^{6}commonfromR_{3},R_{1}andR_{3}$ becomes
identical. Hence the value of determinant is zero.