Solveeit Logo

Question

Question: If \[y=\sin \left( m{{\sin }^{-1}}x \right)\], then \[\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d...

If y=sin(msin1x)y=\sin \left( m{{\sin }^{-1}}x \right), then (1x2)d2ydx2xdydx+m2y\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y is ?

Explanation

Solution

In this problem, we have to find the value of the given derivative expression (1x2)d2ydx2xdydx+m2y\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y if y=sin(msin1x)y=\sin \left( m{{\sin }^{-1}}x \right). We can first take the given condition y=sin(msin1x)y=\sin \left( m{{\sin }^{-1}}x \right), we can differentiate it on both sides, we can again find the second derivative using the uv\dfrac{u}{v} method, where uv=uvuvv2\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}. We can then simplify the steps by substituting the assumed values and find the value.

Complete step by step answer:
Here we have to find the value of (1x2)d2ydx2xdydx+m2y\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y.
We are given that,
y=sin(msin1x)\Rightarrow y=\sin \left( m{{\sin }^{-1}}x \right)…….. (1)
We can now differentiate on both sides, we get
dydx=cos(msin1x)×m1x2\Rightarrow \dfrac{dy}{dx}=\cos \left( m{{\sin }^{-1}}x \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}}
We can now simplify the above step, we get
dydx=mcos(msin1x)1x2\Rightarrow \dfrac{dy}{dx}=\dfrac{m\cos \left( m{{\sin }^{-1}}x \right)}{\sqrt{1-{{x}^{2}}}}……….. (2)
We can now find the second derivative using the uv\dfrac{u}{v} method, where uv=uvuvv2\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}.
d2ydx2=m[(1x2)(sin(m(sin1x)))×m1x2(cos(m(sin1x)))×121x2×(02x)(1x2)2]\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( \sqrt{1-{{x}^{2}}} \right)\left( -\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{m}{\sqrt{1-{{x}^{2}}}}-\left( \cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{1}{2\sqrt{1-{{x}^{2}}}}\times \left( 0-2x \right)}{{{\left( \sqrt{1-{{x}^{2}}} \right)}^{2}}} \right]
We can now simplify the above step by cancelling similar terms, we get
d2ydx2=m[(msin(m(sin1x)))+(cos(m(sin1x)))×x1x21x2]\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+\left( \cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)\times \dfrac{x}{\sqrt{1-{{x}^{2}}}}}{1-{{x}^{2}}} \right]
We can now write the denominator separately for each term, we get
d2ydx2=m[(msin(m(sin1x)))1x2+(xcos(m(sin1x)))1x21x2]\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}}+\dfrac{\left( x\cos \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}\sqrt{1-{{x}^{2}}}} \right]
We can now substitute the derivative (2), we get
d2ydx2=m[(msin(m(sin1x)))1x2+xdydx1x2]\Rightarrow \dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \dfrac{\left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)}{1-{{x}^{2}}}+\dfrac{x\dfrac{dy}{dx}}{1-{{x}^{2}}} \right]
We can see that we have common denominator now, so we can multiply 1x21-{{x}^{2}} on both sides, we get
(1x2)d2ydx2=m[(msin(m(sin1x)))+xdydx]\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=m\left[ \left( -m\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+x\dfrac{dy}{dx} \right]
We can now multiply the term m insides, we get
(1x2)d2ydx2=[(m2sin(m(sin1x)))+mxdydx]\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\left[ \left( -{{m}^{2}}\sin \left( m\left( {{\sin }^{-1}}x \right) \right) \right)+mx\dfrac{dy}{dx} \right]
We can now substitute (1), in the above step, we get
(1x2)d2ydx2=m2y+mxdydx\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=-{{m}^{2}}y+mx\dfrac{dy}{dx}
We can now add m2y+mxdydx-{{m}^{2}}y+mx\dfrac{dy}{dx} on both sides, we get
(1x2)d2ydx2mxdydx+m2y=0\Rightarrow \left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-mx\dfrac{dy}{dx}+{{m}^{2}}y=0
Therefore, the value of (1x2)d2ydx2xdydx+m2y\left( 1-{{x}^{2}} \right)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}-x\dfrac{dy}{dx}+{{m}^{2}}y is 0.

Note: We should always remember that, if we have terms in fraction, we can differentiate it using the uv\dfrac{u}{v} method, where uv=uvuvv2\dfrac{u}{v}=\dfrac{u'v-uv'}{{{v}^{2}}}. We should also know the differentiation formula to differentiate the terms and simplify to find the required answer.