Solveeit Logo

Question

Mathematics Question on Statistics

If y=sin2(tan11x21+x2),y = \sin^{2} \left(\tan^{-1} \sqrt{\frac{1-x^{2}}{1+x^{2}}}\right), then dydx\frac{dy}{dx} =

A

x

B

-x

C

1

D

-1

Answer

-x

Explanation

Solution

y=sin2(tan11x21+x2)y = \sin^{2} \left(\tan^{-1} \sqrt{\frac{1-x^{2}}{1+x^{2}}}\right)
Put x2=cosθ2xdxdθ=sinθx^{2} = \cos \theta \Rightarrow 2x \frac{dx}{d\theta} = -\sin \theta
y=sin2(tan11cosθ1+cosθ)\Rightarrow y= \sin^{2} \left(\tan ^{-1} \sqrt{\frac{1 -\cos \theta }{1+\cos \theta }}\right)
=sin2(tan12sin2(θ2)2cos2(θ2))= \sin ^{2} \left(\tan ^{-1} \sqrt{\frac{2 \sin ^{2} \left(\theta 2\right) }{2 \cos^{2} \left(\theta 2\right) }}\right)
=sin2(tan1(tanθ2))= \sin^{2} \left(\tan^{-1} \left(\tan \frac{\theta}{2} \right)\right)
y=sin2(θ2)\Rightarrow y= \sin^{2} \left(\frac{\theta}{2}\right)
Now, dydx=dydθ.dθdx=(2sinθ2cosθ2).12×(2xsinθ)\frac{dy}{dx} = \frac{dy}{d\theta} . \frac{d\theta}{dx} = \left( 2 \sin \frac{\theta}{2} \cos \frac{\theta}{2} \right). \frac{1}{2} \times \left(\frac{-2x}{\sin \theta }\right)
=2sinθ2cosθ2.12×2x2sinθ2cosθ2= 2 \sin \frac{\theta}{2} \cos \frac{\theta }{2}. \frac{1}{2}\times \frac{-2x}{ 2\sin \frac{\theta }{2} \cos \frac{\theta }{2} }
=x= -x