Solveeit Logo

Question

Mathematics Question on Derivatives of Functions in Parametric Forms

If y=sin2(cot11+x1x)y = \sin^2 (\cot^{-1} \sqrt{\frac{1+x}{1-x}} ) , then dydx\frac{dy}{dx} =

A

12\frac{-1}{2}

B

11+x\frac{1}{ 1 + x }

C

11x\frac{1}{1 -x}

D

11

Answer

12\frac{-1}{2}

Explanation

Solution

Given, y=sin2(cot11+x1x)y=\sin ^{2}\left(\cot ^{-1} \sqrt{\frac{1+x}{1-x}}\right)
Let x=cos2θx =\cos 2 \theta \dots(i)
y=sin2[cot11+cos2θ1cos2θ]\therefore y =\sin ^{2}\left[\cot ^{-1} \sqrt{\frac{1+\cos 2 \theta}{1-\cos 2 \theta}}\right]
[1+cos2θ=2cos2θ and 1cos2θ=2sin2θ]\left[\because 1+\cos 2 \theta=2 \cos ^{2} \theta \text { and } 1-\cos 2 \theta=2 \sin ^{2} \theta\right]
=sin2[cot12cos2θ2sin2θ]= \sin ^{2}\left[\cot ^{-1} \sqrt{\frac{2 \cos ^{2} \theta}{2 \sin ^{2} \theta}}\right]
=sin2[cot1(cotθ)]= \sin ^{2}\left[\cot ^{-1}(\cot \theta)\right]
y=sin2θ\Rightarrow y=\sin ^{2} \theta
[Differentiating w.r.t. θ\theta, we get ]]
dydθ=2sinθcosθ\Rightarrow \frac{d y}{d \theta}=2 \sin \theta \cos \theta
dydθ=sin2θ\Rightarrow \frac{d y}{d \theta}=\sin 2 \theta \ldots(ii)
Differentiating E (i) w.r.t. θ\theta, we get
dxdθ=2sin2θ\frac{d x}{d \theta}=-2 \sin 2 \theta \dots(iii)
dydx=dy/dθdx/dθ=sin2θ2sin2θ\because \frac{d y}{d x}=\frac{d y / d \theta}{d x / d \theta}=\frac{\sin 2 \theta}{-2 \sin 2 \theta}
[by Eqs. (ii) and (iii)]
dydx=12\Rightarrow \frac{d y}{d x}=-\frac{1}{2}