Question
Mathematics Question on Derivatives of Functions in Parametric Forms
If y=sin2(cot−11−x1+x), then dxdy =
A
2−1
B
1+x1
C
1−x1
D
1
Answer
2−1
Explanation
Solution
Given, y=sin2(cot−11−x1+x)
Let x=cos2θ…(i)
∴y=sin2[cot−11−cos2θ1+cos2θ]
[∵1+cos2θ=2cos2θ and 1−cos2θ=2sin2θ]
=sin2[cot−12sin2θ2cos2θ]
=sin2[cot−1(cotθ)]
⇒y=sin2θ
[Differentiating w.r.t. θ, we get ]
⇒dθdy=2sinθcosθ
⇒dθdy=sin2θ…(ii)
Differentiating E (i) w.r.t. θ, we get
dθdx=−2sin2θ…(iii)
∵dxdy=dx/dθdy/dθ=−2sin2θsin2θ
[by Eqs. (ii) and (iii)]
⇒dxdy=−21