Solveeit Logo

Question

Mathematics Question on Derivatives

If y=sin2cot11+x1x,y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}}, then dydx\frac{dy}{dx} is equal to

A

2sin2x2\sin 2x

B

sin2x\sin 2x

C

12\frac{1}{2}

D

12-\frac{1}{2}

Answer

12-\frac{1}{2}

Explanation

Solution

y=sin2cot11+x1xy={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+x}{1-x}} Put, x=cosθx=\cos \theta
\Rightarrow θ=cos1x\theta ={{\cos }^{-1}}x ...(i) y=sin2cot11+cosθ1cosθy={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{1+\cos \theta }{1-\cos \theta }} y=sin2cot12cos2θ/22sin2θ/2y={{\sin }^{2}}{{\cot }^{-1}}\sqrt{\frac{2{{\cos }^{2}}\theta /2}{2{{\sin }^{2}}\theta /2}} y=sin2cot1(cotθ/2)y={{\sin }^{2}}{{\cot }^{-1}}(\cot \theta /2) y=sin2θ/2y={{\sin }^{2}}\theta /2 y=1cosθ2y=\frac{1-\cos \theta }{2} y=1x2y=\frac{1-x}{2} [From E(i)] Differentiating w.r.t. x,x, we get dydx=12\frac{dy}{dx}=-\frac{1}{2}