Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=sin1(x1x+1)+sec1(x+1x1)y=sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)+sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right), x>0x > 0, then dydx\frac{dy}{dx} is equal to

A

11

B

00

C

π2\frac{\pi}{2}

D

None of these

Answer

00

Explanation

Solution

y=sin1(x1x+1)+sec1(x+1x1)y=sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right)+sec^{-1}\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}\right) =sin1(x1x+1)=sin^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) +cos1(x1x+1)+cos^{-1}\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}\right) =π2=\frac{\pi}{2} \left\\{\because sin^{-1}\,x+cos^{-1}\,x=\frac{\pi}{2}\right\\} y=π2\Rightarrow y=\frac{\pi}{2} dydx=0\Rightarrow \frac{dy}{dx}=0