Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=sin1(5x+121x213) y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right) , then dydx=\frac{dy}{dx} =

A

31x2 \frac{3}{\sqrt{1 -x^{2}}}

B

121x2 \frac{12}{\sqrt{1 -x^{2}}}

C

11x2 \frac{-1}{\sqrt{1 -x^{2}}}

D

11x2 \frac{1}{\sqrt{1 -x^{2}}}

Answer

11x2 \frac{1}{\sqrt{1 -x^{2}}}

Explanation

Solution

y=sin1(5x+121x213)y =\sin^{-1} \left(\frac{5x+12 \sqrt{1 -x^{2}}}{13}\right)
Put x=sinθθ=sin1xx = \sin \theta \Rightarrow \theta = \sin^{-1} x
y=sin1(5sinθ+12cosθ13)y = \sin ^{-1} \left(\frac{5 \sin \theta +12 \cos\theta }{13}\right)
Now, put 513=cost \frac{5}{13} = \cos t and 1213=sint\frac{12}{13} = \sin t
tant=125t=tan1125\Rightarrow \tan t = \frac{12}{5} \Rightarrow t =\tan^{-1} \frac{12}{5}
y=sin1(costsinθ+sintcosθ)\therefore \:\:\: y = \sin ^{-1}\left(\cos t \sin \theta +\sin t \cos \theta\right)
=sin1sin(θ+t)= \sin ^{-1} \sin \left(\theta +t\right)
y=θ+ty=sin1x+tan1(125)y= \theta +t \Rightarrow y =\sin ^{-1} x + \tan ^{-1} \left(\frac{12}{5}\right)
Now, dydx=11x2 \frac{dy}{dx} = \frac{1 }{\sqrt{1-x^{2}}}