Question
Mathematics Question on Continuity and differentiability
If y=sin−1(135x+121−x2) , then dxdy=
A
1−x23
B
1−x212
C
1−x2−1
D
1−x21
Answer
1−x21
Explanation
Solution
y=sin−1(135x+121−x2)
Put x=sinθ⇒θ=sin−1x
y=sin−1(135sinθ+12cosθ)
Now, put 135=cost and 1312=sint
⇒tant=512⇒t=tan−1512
∴y=sin−1(costsinθ+sintcosθ)
=sin−1sin(θ+t)
y=θ+t⇒y=sin−1x+tan−1(512)
Now, dxdy=1−x21