Question
Question: If \(y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alph...
If y=sin−1[(1−cosαsinx)(sinαsinx)] theny′(0) is equal to
1.1
2. tanα
3. (21)tanα
4. sinα
Solution
In order to find the value of y′(0) find the first order derivative by differentiating the given function with respect to x. The function can be solved by using the Chain rule, which is as solving the inner function then solving the outer function, which is numerically written as:
dxdy=dcdu×dvdc×dxdv, where u, c, v can be the functions inside the main function.
Formula used:
dxd[g(x)f(x)]=[g(x)]2g(x)f′(x)−f(x)g′(x)
Complete answer:
We are given with a function y=sin−1[(1−cosαsinx)(sinαsinx)].
Since, the value inside the braces is in the form of division so, we can use the Quotient rule of derivatives when needed, which is:
dxd[g(x)f(x)]=[g(x)]2g(x)f′(x)−f(x)g′(x)
Starting with differentiation.
Considering u=(1−cosαsinx)(sinαsinx)
And, so, the value becomes:
y=sin−1u
Differentiating u with respect to x using the quotient rule, we get:
Comparing:
And, substituting the values:
dxdu=(1−cosαsinx)2(1−cosαsinx)dxd(sinαsinx)−(sinαsinx)dxd(1−cosαsinx)
⇒dxdu=(1−cosαsinx)2sinα(1−cosαsinx)dxd(sinx)−(sinαsinx)(dxd1−cosαdxd(sinx))
Since, we know that dxd(sinx)=cosx
so, we get:
⇒dxdu=(1−cosαsinx)2sinα(1−cosαsinx)cosx−(sinαsinx)(−cosxcosα)
⇒dxdu=(1−cosαsinx)2sinαcosx(1−cosαsinx)+(sinαsinxcosxcosα)
Taking sinαcosx common, we get:
⇒dxdu=(1−cosαsinx)2sinαcosx(1−cosαsinx+sinxcosα)
⇒dxdu=(1−cosαsinx)2sinαcosx
Now, differentiating both sides of the function y, with respect to x we get:
Since, we have y=sin−1u, So, we can write:
dxdy=dudy×dxdu
As, we know that dxd(sin−1x)=1−x21: So, we get:
⇒y′=1−u21dxdu
Substituting the value of u and dxdu we get:
⇒y′=1−(1−cosαsinx)2(sinαsinx)21×(1−cosαsinx)2sinαcosx
Solving it further, we get:
⇒y′=(1−cosαsinx)2(1−cosαsinx)2−(sinαsinx)21×(1−cosαsinx)2sinαcosx
⇒y′=(1−cosαsinx)2−(sinαsinx)2(1−cosαsinx)×(1−cosαsinx)2sinαcosx
Cancelling (1−cosαsinx) from the numerator and denominator, we get:
⇒y′=(1−cosαsinx)(1−cosαsinx)2−(sinαsinx)2sinαcosx
As, we needed to find the value of y=0:
So, now putting x=0 we get:
⇒y′=(1−cosαsin0)(1−cosαsin0)2−(sinαsin0)2sinαcos0
Since, we know that cos0=1 and sin0 = 0 so, we get:
⇒y′=(1−0)(1−0)2−02sinα×1
⇒y′=112sinα×1
⇒y′=sinα
That gives the value y′(0)=sinα.
Hence, Option (4) is the correct Answer.
Note:
If needed we can solve the obtained first order derivative more to its simplest form using the formula (a−b)2=a2+b2−2ab, but since, we can see there would be no change in the answer after solving it further as we can substitute the value at this stage only.