Solveeit Logo

Question

Question: If \(y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alph...

If y=sin1[(sinαsinx)(1cosαsinx)]y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right] theny(0)y'(0) is equal to
1.11
2. tanα\tan \alpha
3. (12)tanα\left( {\dfrac{1}{2}} \right)\tan \alpha
4. sinα\sin \alpha

Explanation

Solution

In order to find the value of y(0)y'(0) find the first order derivative by differentiating the given function with respect to x. The function can be solved by using the Chain rule, which is as solving the inner function then solving the outer function, which is numerically written as:
dydx=dudc×dcdv×dvdx\dfrac{{dy}}{{dx}} = \dfrac{{du}}{{dc}} \times \dfrac{{dc}}{{dv}} \times \dfrac{{dv}}{{dx}}, where u, c, v can be the functions inside the main function.
Formula used:
ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)[g(x)]2\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}

Complete answer:
We are given with a function y=sin1[(sinαsinx)(1cosαsinx)]y = {\sin ^{ - 1}}\left[ {\dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}} \right].
Since, the value inside the braces is in the form of division so, we can use the Quotient rule of derivatives when needed, which is:
ddx[f(x)g(x)]=g(x)f(x)f(x)g(x)[g(x)]2\dfrac{d}{{dx}}\left[ {\dfrac{{f(x)}}{{g(x)}}} \right] = \dfrac{{g(x)f'(x) - f(x)g'(x)}}{{{{\left[ {g(x)} \right]}^2}}}
Starting with differentiation.
Considering u=(sinαsinx)(1cosαsinx)u = \dfrac{{\left( {\sin \alpha \sin x} \right)}}{{\left( {1 - \cos \alpha \sin x} \right)}}
And, so, the value becomes:
y=sin1uy = {\sin ^{ - 1}}u
Differentiating u with respect to x using the quotient rule, we get:
Comparing:

f(x)=(sinαsinx) g(x)=(1cosαsinx)  f\left( x \right) = \left( {\sin \alpha \sin x} \right) \\\ g\left( x \right) = \left( {1 - \cos \alpha \sin x} \right) \\\

And, substituting the values:
dudx=(1cosαsinx)d(sinαsinx)dx(sinαsinx)d(1cosαsinx)dx(1cosαsinx)2\dfrac{{du}}{{dx}} = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin \alpha \sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\dfrac{{d\left( {1 - \cos \alpha \sin x} \right)}}{{dx}}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
dudx=sinα(1cosαsinx)d(sinx)dx(sinαsinx)(d1dxcosαd(sinx)dx)(1cosαsinx)2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\dfrac{{d\left( {\sin x} \right)}}{{dx}} - \left( {\sin \alpha \sin x} \right)\left( {\dfrac{{d1}}{{dx}} - \cos \alpha \dfrac{{d\left( {\sin x} \right)}}{{dx}}} \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
Since, we know that d(sinx)dx=cosx\dfrac{{d\left( {\sin x} \right)}}{{dx}} = \cos x
so, we get:
dudx=sinα(1cosαsinx)cosx(sinαsinx)(cosxcosα)(1cosαsinx)2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \left( {1 - \cos \alpha \sin x} \right)\cos x - \left( {\sin \alpha \sin x} \right)\left( { - \cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
dudx=sinαcosx(1cosαsinx)+(sinαsinxcosxcosα)(1cosαsinx)2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x} \right) + \left( {\sin \alpha \sin x\cos x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
Taking sinαcosx\sin \alpha \cos x common, we get:
dudx=sinαcosx(1cosαsinx+sinxcosα)(1cosαsinx)2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x\left( {1 - \cos \alpha \sin x + \sin x\cos \alpha } \right)}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
dudx=sinαcosx(1cosαsinx)2\Rightarrow \dfrac{{du}}{{dx}} = \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
Now, differentiating both sides of the function y, with respect to xx we get:
Since, we have y=sin1uy = {\sin ^{ - 1}}u, So, we can write:
dydx=dydu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}}
As, we know that d(sin1x)dx=11x2\dfrac{{d\left( {{{\sin }^{ - 1}}x} \right)}}{{dx}} = \dfrac{1}{{\sqrt {1 - {x^2}} }}: So, we get:
y=11u2dudx\Rightarrow y' = \dfrac{1}{{\sqrt {1 - {u^2}} }}\dfrac{{du}}{{dx}}
Substituting the value of u and dudx\dfrac{{du}}{{dx}} we get:
y=11(sinαsinx)2(1cosαsinx)2×sinαcosx(1cosαsinx)2\Rightarrow y' = \dfrac{1}{{\sqrt {1 - \dfrac{{{{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
Solving it further, we get:
y=1(1cosαsinx)2(sinαsinx)2(1cosαsinx)2×sinαcosx(1cosαsinx)2\Rightarrow y' = \dfrac{1}{{\sqrt {\dfrac{{{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
y=(1cosαsinx)(1cosαsinx)2(sinαsinx)2×sinαcosx(1cosαsinx)2\Rightarrow y' = \dfrac{{\left( {1 - \cos \alpha \sin x} \right)}}{{\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }} \times \dfrac{{\sin \alpha \cos x}}{{{{\left( {1 - \cos \alpha \sin x} \right)}^2}}}
Cancelling (1cosαsinx)\left( {1 - \cos \alpha \sin x} \right) from the numerator and denominator, we get:
y=sinαcosx(1cosαsinx)(1cosαsinx)2(sinαsinx)2\Rightarrow y' = \dfrac{{\sin \alpha \cos x}}{{\left( {1 - \cos \alpha \sin x} \right)\sqrt {{{\left( {1 - \cos \alpha \sin x} \right)}^2} - {{\left( {\sin \alpha \sin x} \right)}^2}} }}
As, we needed to find the value of y=0:
So, now putting x=0x = 0 we get:
y=sinαcos0(1cosαsin0)(1cosαsin0)2(sinαsin0)2\Rightarrow y' = \dfrac{{\sin \alpha \cos 0}}{{\left( {1 - \cos \alpha \sin 0} \right)\sqrt {{{\left( {1 - \cos \alpha \sin 0} \right)}^2} - {{\left( {\sin \alpha \sin 0} \right)}^2}} }}
Since, we know that cos0=1 and sin0 = 0\cos 0 = 1{\text{ and sin0 = 0}} so, we get:
y=sinα×1(10)(10)202\Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{\left( {1 - 0} \right)\sqrt {{{\left( {1 - 0} \right)}^2} - {0^2}} }}
y=sinα×1112\Rightarrow y' = \dfrac{{\sin \alpha \times 1}}{{1\sqrt {{1^2}} }}
y=sinα\Rightarrow y' = \sin \alpha
That gives the value y(0)=sinαy'(0) = \sin \alpha .
Hence, Option (4) is the correct Answer.

Note:
If needed we can solve the obtained first order derivative more to its simplest form using the formula (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab, but since, we can see there would be no change in the answer after solving it further as we can substitute the value at this stage only.