Solveeit Logo

Question

Question: If \(y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 ...

If y=sin1(2x1+x2)+sec1(1+x21x2)y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right), then dydx=\dfrac{{dy}}{{dx}} =
(A) 4(1x2)\dfrac{4}{{\left( {1 - {x^2}} \right)}}
(B) 4(1+x2)\dfrac{4}{{\left( {1 + {x^2}} \right)}}
(C) 1(1+x2)\dfrac{1}{{\left( {1 + {x^2}} \right)}}
(D) 4(1+x2)\dfrac{{ - 4}}{{\left( {1 + {x^2}} \right)}}

Explanation

Solution

In the given problem, we are required to differentiate the function provided to us in the question with respect to x. Since, y=sin1(2x1+x2)+sec1(1+x21x2)y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right) is a complex composite function, so we will have to apply chain rule of differentiation in the process of differentiating y=sin1(2x1+x2)+sec1(1+x21x2)y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right). So, differentiation with respect to x will be done layer by layer using the chain rule of differentiation. We will first simplify the given function by substituting x as a tangent of an angle. Then, we will express use trigonometric formulae such as sin2θ=(2tanθ1+tan2θ)\sin 2\theta = \left( {\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right). Also the derivative of tan1x{\tan ^{ - 1}}x with respect to xx must be remembered.

Complete answer:
So, we have, y=sin1(2x1+x2)+sec1(1+x21x2)y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right)
Now, we assume x=tanθx = \tan \theta in the function to simplify the expression.
So, we get, y=sin1(2tanθ1+tan2θ)+sec1(1+tan2θ1tan2θ)y = {\sin ^{ - 1}}\left( {\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 + {{\tan }^2}\theta }}{{1 - {{\tan }^2}\theta }}} \right)
Now, we know the double angle trigonometric identities of sine and cosine as 2tanθ1+tan2θ=sin2θ\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta and 1tan2θ1+tan2θ=cos2θ\dfrac{{1 - {{\tan }^2}\theta }}{{1 + {{\tan }^2}\theta }} = \cos 2\theta . So, using these formulae in the function, we get,
y=sin1(sin(2θ))+sec1(1cos(2θ))\Rightarrow y = {\sin ^{ - 1}}\left( {\sin \left( {2\theta } \right)} \right) + {\sec ^{ - 1}}\left( {\dfrac{1}{{\cos \left( {2\theta } \right)}}} \right)
Now, we know that cosine and secant functions are reciprocal trigonometric functions. So, we get,
y=sin1(sin(2θ))+sec1(sec(2θ))\Rightarrow y = {\sin ^{ - 1}}\left( {\sin \left( {2\theta } \right)} \right) + {\sec ^{ - 1}}\left( {\sec \left( {2\theta } \right)} \right)
We also know that sin1(sinx)=x{\sin ^{ - 1}}\left( {\sin x} \right) = x and sec1(secx)=x{\sec ^{ - 1}}\left( {\sec x} \right) = x for x belonging to the principal value branch.
y=(2θ)+(2θ)\Rightarrow y = \left( {2\theta } \right) + \left( {2\theta } \right)
Adding up the like terms, we get,
y=4θ\Rightarrow y = 4\theta
Now, substituting back the value of θ\theta as tan1x{\tan ^{ - 1}}x since we assumed x=tanθx = \tan \theta . So, we get,
y=4tan1(x)\Rightarrow y = 4{\tan ^{ - 1}}\left( x \right)
Now, we differentiate both sides of the above function.
dydx=ddx[4tan1(x)]\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}\left[ {4{{\tan }^{ - 1}}\left( x \right)} \right]
We know that the derivative of the inverse tangent function tan1x{\tan ^{ - 1}}x is 11+x2\dfrac{1}{{1 + {x^2}}} . So, we get the derivative as,
dydx=41+x2\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{4}{{1 + {x^2}}}
So, the value of dydx\dfrac{{dy}}{{dx}} if y=sin1(2x1+x2)+sec1(1+x21x2)y = {\sin ^{ - 1}}\left( {\dfrac{{2x}}{{1 + {x^2}}}} \right) + {\sec ^{ - 1}}\left( {\dfrac{{1 + {x^2}}}{{1 - {x^2}}}} \right) is (41+x2)\left( {\dfrac{4}{{1 + {x^2}}}} \right).
Hence, option (B) is the correct answer.

Note:
The given problem may also be solved using the first principle of differentiation. The derivatives of basic trigonometric functions must be learned by heart in order to find derivatives of complex composite functions using chain rule of differentiation. The questions involve simplification of the function using trigonometric formulae and identity and then using basic results of differentiation to find the correct answer. We must take care while substituting the value of a variable.