Solveeit Logo

Question

Mathematics Question on Differentiability

If y=sin1(3x4x3)+cos1(4x33x)y={{\sin }^{-1}}(3x-4{{x}^{3}})+{{\cos }^{-1}}(4{{x}^{3}}-3x) +tan1(e),+{{\tan }^{-1}}(e), then dydx\frac{dy}{dx} is equal to

A

55

B

00

C

21+x2\frac{2}{\sqrt{1+{{x}^{2}}}}

D

21x2\frac{2}{\sqrt{1-{{x}^{2}}}}

Answer

00

Explanation

Solution

Given, y=sin1(3x4x)2+cos1(4x33x)y={{\sin }^{-1}}{{(3x-4x)}^{2}}+{{\cos }^{-1}}(4{{x}^{3}}-3x) +tan1(E)+{{\tan }^{-1}}(E)
\Rightarrow y=3sin1x+3cos1x+tan1(E)y=3{{\sin }^{-1}}x+3{{\cos }^{-1}}x+{{\tan }^{-1}}(E)
\Rightarrow y=3π2+tan1(E)y=\frac{3\pi }{2}+{{\tan }^{-1}}(E)
On differentiating w.r.t. x,x, we get dydx=0\frac{dy}{dx}=0