Solveeit Logo

Question

Mathematics Question on Statistics

If y=sin1(3x)y= \sin^{-1} (3^{-x}), then dydx=\frac{dy}{dx} =

A

log332x1-\frac{\log 3}{\sqrt{3^{2x}-1}}

B

3xlog332x1\frac{3^{x}\log 3}{\sqrt{3^{2x}-1}}

C

3xlog332x1\frac{- 3^{x}\log 3}{\sqrt{3^{2x}-1}}

D

log33x32x1\frac{\log 3}{3^{x} \sqrt{3^{2x}-1}}

Answer

log332x1-\frac{\log 3}{\sqrt{3^{2x}-1}}

Explanation

Solution

We have , y=sin1(3x)dydx=1132x.(1).3xlog3y= \sin^{-1} (3^{-x}) \frac{dy}{dx} = \frac{1}{\sqrt{1-3^{-2x}}}.\left(-1\right).3^{-x} \log 3
=3xlog332x132x=log332x1=\frac{-3^{-x}\log 3}{\sqrt{\frac{3^{2x} -1}{3^{2x}}}} = \frac{\log 3}{\sqrt{3^{2x} -1}}