Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=secx?y = \sec\, x^?, then dydx\frac{dy}{dx} is equal to:

A

secxtanx\sec\, x\, \tan \,x

B

secx?tanx?\sec \,x^?\, \tan \,x^?

C

π180secxtanx\frac{\pi}{180} \sec \,x^\circ \, \tan \, x^\circ

D

none of these

Answer

π180secxtanx\frac{\pi}{180} \sec \,x^\circ \, \tan \, x^\circ

Explanation

Solution

Let y=secx?y = \sec\, x? Now ,x=π180.xy=secπ180xx^\circ = \frac{\pi}{180} . x \:\:\: \therefore \: y =\sec \frac{\pi}{180} x Now, dydx=π180secxπ180tanπ180x\frac{dy}{dx} = \frac{\pi}{180} \sec \frac{x \pi}{180} \tan \frac{\pi}{180} x dydx=π180secx.tanx\Rightarrow \:\: \frac{dy}{dx} =\frac{\pi}{180} \: \sec \, x^\circ . \tan \, x^\circ