Solveeit Logo

Question

Question: If \(y\sec x + \tan x + {x^2}y = 0,\) then \(\dfrac{{dy}}{{dx}} = \) \(A)\dfrac{{(2xy + {{\sec }^2...

If ysecx+tanx+x2y=0,y\sec x + \tan x + {x^2}y = 0, then dydx=\dfrac{{dy}}{{dx}} =
A)(2xy+sec2x+ysecxtanx)(x2+secx)A)\dfrac{{(2xy + {{\sec }^2}x + y\sec x\tan x)}}{{({x^2} + \sec x)}}
B)(2xy+sec2xsecxtanx)(x2+secx)B)\dfrac{{(2xy + {{\sec }^2}x\sec x\tan x)}}{{({x^2} + \sec x)}}
C)(2xy+sec2x+ysecxtanx)(x2+secx)C)\dfrac{{ - (2xy + {{\sec }^2}x + y\sec x\tan x)}}{{({x^2} + \sec x)}}
D)D)None of these

Explanation

Solution

First, we need to analyze the given information which is in the trigonometric form.
The concept of trigonometric Identities are useful whenever trigonometric functions are involved in an expression or an equation and these identities are useful whenever expressions involving trigonometric functions need to be simplified.
From the given, we asked to calculate the value of differentiation function dydx\dfrac{{dy}}{{dx}} when ysecx+tanx+x2y=0,y\sec x + \tan x + {x^2}y = 0, and we will differentiate each and every trigonometric value and variables to make the derivative part easier.
In differentiation, the derivative of xx raised to the power is denoted by ddx(xn)=nxn1\dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} .
Formula used:
d(tanx)dx=sec2x\dfrac{{d(\tan x)}}{{dx}} = {\sec ^2}x
d(secx)dx=secxtanx\dfrac{{d(\sec x)}}{{dx}} =\sec x \tan x

Complete step by step answer:
Since from the given that we have ysecx+tanx+x2y=0,y\sec x + \tan x + {x^2}y = 0,we will derive this function step by step.
Let us take ysecxy\sec x first, and try to derivative this part with respect to the variable xx
Thus we get d(ysecx)dx=dydx(secx)+ysecxtanx\dfrac{{d(y\sec x)}}{{dx}} = \dfrac{{dy}}{{dx}}(\sec x) + y\sec x\tan x we will be done this process by using the uvuv differentiation rule, which is if the terms are in multiplication while derivation we may apply this rule, that is derivative of uv=u1v+uv1uv = {u^1}v + u{v^1}and assume u=y,v=secxu = y,v = \sec x then we have d(secx)dx=secxtanx,d(y)dx=dydx\dfrac{{d(\sec x)}}{{dx}} =\sec x \tan x,\dfrac{{d(y)}}{{dx}} = \dfrac{{dy}}{{dx}} (a derivative of x terms only gets change)
Hence, we have d(ysecx)dx=dydx(secx)+ysecxtanx\dfrac{{d(y\sec x)}}{{dx}} = \dfrac{{dy}}{{dx}}(\sec x) + y\sec x\tan x
Now take the second term tanx\tan xand its derivation given as d(tanx)dx=sec2x\dfrac{{d(\tan x)}}{{dx}} = {\sec ^2}x
Finally, take the last term x2y{x^2}yand apply the same uv=u1v+uv1uv = {u^1}v + u{v^1}concept, thus we get d(x2y)dx=2xy+x2(dydx)\dfrac{{d({x^2}y)}}{{dx}} = 2xy + {x^2}(\dfrac{{dy}}{{dx}})
Thus, derivatives of ysecx+tanx+x2y=0,y\sec x + \tan x + {x^2}y = 0,with respect to x.
Thus, we get dydx(secx)+ysecxtanx+sec2x+2xy+x2(dydx)=0\dfrac{{dy}}{{dx}}(\sec x) + y\sec x\tan x + {\sec ^2}x + 2xy + {x^2}(\dfrac{{dy}}{{dx}}) = 0
Now in the left side place, derivative function and all the terms are on the right sides, thus we have dydx(secx)+x2(dydx)=[ysecxtanx+sec2x+2xy]\dfrac{{dy}}{{dx}}(\sec x) + {x^2}(\dfrac{{dy}}{{dx}}) = - [y\sec x\tan x + {\sec ^2}x + 2xy]
Taking the common terms, we get dydx(secx+x2)=[ysecxtanx+sec2x+2xy]\dfrac{{dy}}{{dx}}(\sec x + {x^2}) = - [y\sec x\tan x + {\sec ^2}x + 2xy]
dydx=[ysecxtanx+sec2x+2xy](secx+x2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{ - [y\sec x\tan x + {{\sec }^2}x + 2xy]}}{{(\sec x + {x^2})}}

So, the correct answer is “Option C”.

Note: Differentiation and integration are inverse processes like a derivative of d(x2)dx=2x\dfrac{{d({x^2})}}{{dx}} = 2x and the integration is 2xdx=2x22=x2\int {2xdx = \dfrac{{2{x^2}}}{2}} = {x^2}.
In total there are six trigonometric values which are sine, cos, tan, sec, cosec, cot while all the values have been relation like sincos=tan\dfrac{{\sin }}{{\cos }} = \tan and tan=1cot\tan = \dfrac{1}{{\cot }}