Solveeit Logo

Question

Mathematics Question on Differentiability

If y=sec(tan1x)y = sec(tan^{-1}x) , then dydx\frac{dy}{dx} at x=1x = 1 is

A

12\frac{1}{2}

B

12\frac{1}{\sqrt{2}}

C

2\sqrt{2}

D

11

Answer

12\frac{1}{\sqrt{2}}

Explanation

Solution

We have, y=sec(tan1x)y = sec (tan ^{-1} x)
=sec[sec1(1+x2)]= sec[sec^{-1} ( \sqrt{1 + x^2})]
[tan1θ=sec1(1+θ2)][\because tan^{-1} \theta = sec^{-1} \sqrt{( 1 + \theta^2})]
y=1+x2\Rightarrow y = \sqrt{ 1 + x^2}
On differentiating both sides w.r.t ?xx?, we get
dydx=12(1+x2)1/2ddx)(1+x2)\frac{dy}{dx} = \frac{1}{2} (1 + x^2) ^{-1/2} \frac{d}{dx} )( 1 + x^2)
=1211+x22x= \frac{1}{2} \frac{1}{\sqrt{1 + x^2}} \cdot 2x
dydx=x(1+x2)\Rightarrow \frac{dy}{dx} = \frac{x}{\sqrt{(1 + x^2)}}
(dydx)x=1=1(1+x2)\Rightarrow (\frac{dy}{dx}) _{x = 1} = \frac{1}{\sqrt{(1+x^2)}}
=12= \frac{1}{\sqrt{2}}