Solveeit Logo

Question

Question: If \(y=\sec \left( {{\tan }^{-1}}x \right)\), then find the value of \(\dfrac{dy}{dx}\) . (a) \(\d...

If y=sec(tan1x)y=\sec \left( {{\tan }^{-1}}x \right), then find the value of dydx\dfrac{dy}{dx} .
(a) x1+x2\dfrac{x}{\sqrt{1+{{x}^{2}}}}
(b) x1+x2x\sqrt{1+{{x}^{2}}}
(c) 1+x2\sqrt{1+{{x}^{2}}}
(d) 11+x2\dfrac{1}{\sqrt{1+{{x}^{2}}}}
(e) x1+x2\dfrac{x}{1+{{x}^{2}}}

Explanation

Solution

Hint: Consider ‘y’ as composite function of f(g(x)) where f(x) is secx\sec x and g(x) is tan1x{{\tan }^{-1}}x and then use the identity
ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right)
Where f(g(x)){{f}^{'}}\left( g\left( x \right) \right) is differentiation of f(x) keeping g(x) as it is and g(x)g'(x) means differentiating g(x) irrespective of f(x).

“Complete step-by-step answer:”

We are given with the function
y=sec(tan1x)y=\sec \left( {{\tan }^{-1}}x \right)
Now we are asked to find (dydx)\left( \dfrac{dy}{dx} \right) which means we have to differentiate ‘y’ with respect to ‘x’.
Let us consider two functions f(x) and g(x) where f(x) be secx\sec x and g(x) be tan1x{{\tan }^{-1}}x.
So we can write,
y=sec(tan1x)y=\sec \left( {{\tan }^{-1}}x \right) as y=f(g(x))y=f\left( g\left( x \right) \right)
Now we have to differentiate ‘y’ with respect to ‘x’ using the identity,
ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\times g'\left( x \right)
Here f(g(x))f'\left( g\left( x \right) \right) means differentiating f(x) keeping g(x) constant and here g(x)g'\left( x \right) means differentiating g(x) independently irrespective of f(x).
So by using the formula which are,
ddx(secx)=secxtanx\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x, ddx(tan1x)=11+x2\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}
We get,
 dydx=sec(tan1x).tan(tan1x).1(1+x2)..........(i)~\dfrac{dy}{dx}=\sec \left( {{\tan }^{-1}}x \right).\tan \left( {{\tan }^{-1}}x \right).\dfrac{1}{\left( 1+{{x}^{2}} \right)}..........(i)
Now here we can use the identity,
tan(tan1x)=x sec(tan1x)=1+x2 \begin{aligned} & \tan \left( {{\tan }^{-1}}x \right)=x \\\ & \sec \left( {{\tan }^{-1}}x \right)=\sqrt{1+{{x}^{2}}} \\\ \end{aligned}
By using these identities, equation (i) can be written as
dydx=1+x2.x.11+x2\dfrac{dy}{dx}=\sqrt{1+{{x}^{2}}}.x.\dfrac{1}{1+{{x}^{2}}}
By rationalizing the above equation, we get
dydx=x1+x2\Rightarrow \dfrac{dy}{dx}=\dfrac{x}{\sqrt{1+{{x}^{2}}}}
Therefore this is the required differentiation.
Hence the correct answer is option (a).

Note: There is alternative way of solving the problem is by converting y=sec(tan1x)y=\sec \left( {{\tan }^{-1}}x \right) as y=1+x2y=\sqrt{1+{{x}^{2}}} and using f(x)=xf\left( x \right)=\sqrt{x} and g(x)=(1+x2)g\left( x \right)=\left( 1+{{x}^{2}} \right) . Thus solving same by the identity
ddx(f(g(x)))=f(g(x))×g(x)\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)={{f}^{'}}\left( g\left( x \right) \right)\times {{g}^{'}}\left( x \right) to get desired result.