Solveeit Logo

Question

Mathematics Question on Differentiability

If y=sec1(11x2),y={{\sec }^{-1}}\left( \frac{1}{\sqrt{1-{{x}^{2}}}} \right), then dydx\frac{dy}{dx} is equal to

A

11x2\frac{1}{\sqrt{1-{{x}^{2}}}}

B

21x2\frac{2}{\sqrt{1-{{x}^{2}}}}

C

11+x2\frac{1}{\sqrt{1+{{x}^{2}}}}

D

21+x2\frac{2}{\sqrt{1+{{x}^{2}}}}

Answer

11x2\frac{1}{\sqrt{1-{{x}^{2}}}}

Explanation

Solution

Given, y=sec1(11x2)y={{\sec }^{-1}}\left( \frac{1}{\sqrt{1-{{x}^{2}}}} \right)
Put, x=sinθx=\sin \theta
\therefore y=sec1(11sin2θ)y={{\sec }^{-1}}\left( \frac{1}{\sqrt{1-{{\sin }^{2}}\theta }} \right)
\Rightarrow y=sec1(secθ)=θy={{\sec }^{-1}}(\sec \theta )=\theta
\Rightarrow y=sin1xy={{\sin }^{-1}}x
\Rightarrow dydx=11x2\frac{dy}{dx}=\frac{1}{\sqrt{1-{{x}^{2}}}}