Solveeit Logo

Question

Question: If \[y = P{e^{ax}} + Q{e^{bx}}\], then show that \[\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{...

If y=Peax+Qebxy = P{e^{ax}} + Q{e^{bx}}, then show that d2ydx2(a+b)dydx+aby=0\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby = 0.

Explanation

Solution

Hint: We have the value of y, find the value of dydx\dfrac{{dy}}{{dx}} and d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} , and then substitute the values in the given expression to show that d2ydx2(a+b)dydx+aby=0\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby = 0.

Complete step-by-step answer:
A differential equation is an equation that relates one or more functions and their derivatives.
Any function that satisfies the differential equation is said to be the solution of the differential equation.
A differential equation can have more than one solution and the general form of the solution is called the general solution of the differential equation.

We are given the value of y as follows:
y=Peax+Qebx............(1)y = P{e^{ax}} + Q{e^{bx}}............(1)
And we need to show the following is true:
d2ydx2(a+b)dydx+aby=0............(2)\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby = 0............(2)
For this to be true, y=Peax+Qebxy = P{e^{ax}} + Q{e^{bx}} must be a solution of d2ydx2(a+b)dydx+aby=0\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby = 0.
We can find the values of dydx\dfrac{{dy}}{{dx}} and d2ydx2\dfrac{{{d^2}y}}{{d{x^2}}} and substitute in the expression d2ydx2(a+b)dydx+aby\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby and check if it is equal to zero.
Differentiating both sides of equation (1) with respect to x, we have:
dydx=ddx(Peax+Qebx)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(P{e^{ax}} + Q{e^{bx}})
We know that the derivative of the sum of two functions is the sum of the derivative of the two functions. Hence, we have:
dydx=ddx(Peax)+ddx(Qebx)\dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}(P{e^{ax}}) + \dfrac{d}{{dx}}(Q{e^{bx}})
The derivative of eax{e^{ax}} is aeaxa{e^{ax}}, then, we have:
dydx=aPeax+bQebx..........(3)\dfrac{{dy}}{{dx}} = aP{e^{ax}} + bQ{e^{bx}}..........(3)
Differentiating both sides of equation (3) with respect to x, we have:
d2ydx2=ddx(aPeax+bQebx)\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(aP{e^{ax}} + bQ{e^{bx}})
Simplifying, we have:
d2ydx2=ddx(aPeax)+ddx(bQebx)\dfrac{{{d^2}y}}{{d{x^2}}} = \dfrac{d}{{dx}}(aP{e^{ax}}) + \dfrac{d}{{dx}}(bQ{e^{bx}})
d2ydx2=a2Peax+b2Qebx..........(4)\dfrac{{{d^2}y}}{{d{x^2}}} = {a^2}P{e^{ax}} + {b^2}Q{e^{bx}}..........(4)
Let LHS=d2ydx2(a+b)dydx+abyLHS = \dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby, then substituting equations (1), (3) and (4) in equation (2), we have:
LHS=a2Peax+b2Qebx(a+b)(aPeax+bQebx)+ab(Peax+Qebx)LHS = {a^2}P{e^{ax}} + {b^2}Q{e^{bx}} - (a + b)(aP{e^{ax}} + bQ{e^{bx}}) + ab(P{e^{ax}} + Q{e^{bx}})
Evaluating, we have:
LHS=a2Peax+b2Qebxa2PeaxabPeaxb2QebxabQebx+abPeax+abQebxLHS = {a^2}P{e^{ax}} + {b^2}Q{e^{bx}} - {a^2}P{e^{ax}} - abP{e^{ax}} - {b^2}Q{e^{bx}} - abQ{e^{bx}} + abP{e^{ax}} + abQ{e^{bx}}
Canceling common terms, we have:
LHS=0LHS = 0
d2ydx2(a+b)dydx+aby=0\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby = 0
Hence, we showed d2ydx2(a+b)dydx+aby=0\dfrac{{{d^2}y}}{{d{x^2}}} - (a + b)\dfrac{{dy}}{{dx}} + aby = 0.

Note: Do not forget the negative sign when evaluating (a+b)dydx - (a + b)\dfrac{{dy}}{{dx}} and remember that the differentiation of aeaxa{e^{ax}} is a2eax{a^2}{e^{ax}}.Students should remember the formulas of product of differentiation and quotient of differentiation for solving these types of problems.