Solveeit Logo

Question

Question: If \(y = m\log x + n{x^2} + x\) has its extreme values at \(x = 2\) and \(x = 1\), then \(2m + 10n\)...

If y=mlogx+nx2+xy = m\log x + n{x^2} + x has its extreme values at x=2x = 2 and x=1x = 1, then 2m+10n2m + 10n is equal to
A. 1 B. 4 C. 2 D. 1 E. 3  {\text{A}}{\text{. }} - 1 \\\ {\text{B}}{\text{. }} - 4 \\\ {\text{C}}{\text{. }} - 2 \\\ {\text{D}}{\text{. 1}} \\\ {\text{E}}{\text{. }} - 3 \\\

Explanation

Solution

Hint- Here, we will be proceeding by differentiating the given function with respect to x and then putting dydx=0\dfrac{{dy}}{{dx}} = 0 and afterwards substituting the given extreme values of x to obtain the two equation in terms of m and n only and then we will solve them.
Given, y=mlogx+nx2+x (1)y = m\log x + n{x^2} + x{\text{ }} \to {\text{(1)}} which is a function in terms of variable x.

It is also given that the function represented in equation (1) has its extreme values at x=2x = 2 and x=1x = 1.
As we know that extreme values of any function y are obtained by finding dydx\dfrac{{dy}}{{dx}} and then putting dydx=0\dfrac{{dy}}{{dx}} = 0.
By differentiating the function given by equation (1) both sides with respect to x, we get
dydx=d[mlogx+nx2+x]dx=d(mlogx)dx+d(nx2)dx+dxdx\dfrac{{dy}}{{dx}} = \dfrac{{d\left[ {m\log x + n{x^2} + x} \right]}}{{dx}} = \dfrac{{d\left( {m\log x} \right)}}{{dx}} + \dfrac{{d\left( {n{x^2}} \right)}}{{dx}} + \dfrac{{dx}}{{dx}}
Since, m and n are constants (i.e., independent of variable x) so we can take them out of the differentiation.

dydx=m[d(logx)dx]+n[d(x2)dx]+1=m[1x]+n[2x]+1 dydx=mx+2nx+1  \Rightarrow \dfrac{{dy}}{{dx}} = m\left[ {\dfrac{{d\left( {\log x} \right)}}{{dx}}} \right] + n\left[ {\dfrac{{d\left( {{x^2}} \right)}}{{dx}}} \right] + 1 = m\left[ {\dfrac{1}{x}} \right] + n\left[ {2x} \right] + 1 \\\ \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{m}{x} + 2nx + 1 \\\

Put dydx=0\dfrac{{dy}}{{dx}} = 0 for the extreme values of the variable x, we get

0=mx+2nx+1 0=m+2nx2+xx 0=m+2nx2+x 2nx2+x+m=0 (2)  \Rightarrow 0 = \dfrac{m}{x} + 2nx + 1 \\\ \Rightarrow 0 = \dfrac{{m + 2n{x^2} + x}}{x} \\\ \Rightarrow 0 = m + 2n{x^2} + x \\\ \Rightarrow 2n{x^2} + x + m = 0{\text{ }} \to {\text{(2)}} \\\

So, we are having a quadratic equation in variable x which means there will be two extreme values of x. These extreme values are x=2x = 2 and x=1x = 1. These two given extreme values should satisfy the quadratic equation given by equation (2).
Put x=2 in equation (2), we get

2n(2)2+2+m=0 8n+2+m=0 (3)  \Rightarrow 2n{\left( 2 \right)^2} + 2 + m = 0 \\\ \Rightarrow 8n + 2 + m = 0{\text{ }} \to {\text{(3)}} \\\

Put x=1 in equation (2), we get

2n(1)2+1+m=0 2n+1+m=0 (4)  \Rightarrow 2n{\left( 1 \right)^2} + 1 + m = 0 \\\ \Rightarrow 2n + 1 + m = 0{\text{ }} \to {\text{(4)}} \\\

In order to obtain the values of constants m and n we will subtract equation (4) from equation (3), we have

8n+2+m(2n+1+m)=00 8n+2+m2n1m=0 6n+1=0 6n=1 n=16  \Rightarrow 8n + 2 + m - \left( {2n + 1 + m} \right) = 0 - 0 \\\ \Rightarrow 8n + 2 + m - 2n - 1 - m = 0 \\\ \Rightarrow 6n + 1 = 0 \\\ \Rightarrow 6n = - 1 \\\ \Rightarrow n = \dfrac{{ - 1}}{6} \\\

Put n=16n = \dfrac{{ - 1}}{6} in equation (4) to obtain the value of m, we have

2[16]+1+m=0 13+1+m=0 m=131=133 m=23  \Rightarrow 2\left[ {\dfrac{{ - 1}}{6}} \right] + 1 + m = 0 \\\ \Rightarrow \dfrac{{ - 1}}{3} + 1 + m = 0 \\\ \Rightarrow m = \dfrac{1}{3} - 1 = \dfrac{{1 - 3}}{3} \\\ \Rightarrow m = \dfrac{{ - 2}}{3} \\\

Put m=23m = \dfrac{{ - 2}}{3} and n=16n = \dfrac{{ - 1}}{6} to find the value for the expression 2m+10n2m + 10n, we get
2m+10n=2[23]+10[16]=4353=453=93 2m+10n=3  2m + 10n = 2\left[ {\dfrac{{ - 2}}{3}} \right] + 10\left[ {\dfrac{{ - 1}}{6}} \right] = \dfrac{{ - 4}}{3} - \dfrac{5}{3} = \dfrac{{ - 4 - 5}}{3} = \dfrac{{ - 9}}{3} \\\ \Rightarrow 2m + 10n = - 3 \\\
Hence, option E is correct.

Note- At the extreme values for any function y, dydx=0\dfrac{{dy}}{{dx}} = 0. Also, if d2ydx2>0\dfrac{{{d^2}y}}{{d{x^2}}} > 0 that means at this extreme value, minima occurs (i.e., we will be getting the minimum value of y corresponding to this extreme value of x) and if d2ydx2<0\dfrac{{{d^2}y}}{{d{x^2}}} < 0 that means at this extreme value, maxima occurs (i.e., we will be getting the maximum value of y corresponding to this extreme value of x).