Solveeit Logo

Question

Question: If y = log<sub>e</sub>x<sup>3</sup> + 3 sin<sup>–1</sup>x + kx<sup>2</sup> and y ¢\(\left( \frac{1}{...

If y = logex3 + 3 sin–1x + kx2 and y ¢(12)=23\left( \frac{1}{2} \right) = 2\sqrt{3} then k =

A

6

B

– 6

C

232\sqrt{3}

D

None

Answer

– 6

Explanation

Solution

dydx=3x2x3+31x2\frac{dy}{dx} = \frac{3x^{2}}{x^{3}} + \frac{3}{\sqrt{1 - x^{2}}}+ k(2x)

Ždydx(x=12)=6+63\frac{dy}{dx}_{\left( x = \frac{1}{2} \right)} = 6 + \frac{6}{\sqrt{3}} + k

Now dydx(x=12)=23\frac{dy}{dx}_{\left( x = \frac{1}{2} \right)} = 2\sqrt{3} given

\ 6 + (6/36/\sqrt{3}) + k = 232\sqrt{3} Ž k = – 6