Solveeit Logo

Question

Question: If y = log<sub>10</sub>(sin<sup>–1</sup>x<sup>2</sup>) then at x = \(\frac{1}{\sqrt{2}},\frac{dy}{dx...

If y = log10(sin–1x2) then at x = 12,dydx\frac{1}{\sqrt{2}},\frac{dy}{dx} =

A

26log10eπ\frac{2\sqrt{6}\log_{10}e}{\pi}

B

46log10eπ\frac{4\sqrt{6}\log_{10}e}{\pi}

C

26loge10π\frac{2\sqrt{6}\log_{e}10}{\pi}

D

46loge10π\frac{4\sqrt{6}\log_{e}10}{\pi}

Answer

46log10eπ\frac{4\sqrt{6}\log_{10}e}{\pi}

Explanation

Solution

dydx\frac{dy}{dx} = 1loge10[1sin1x2]11x42x\frac { 1 } { \log _ { \mathrm { e } } 10 } \left[ \frac { 1 } { \sin ^ { - 1 } \mathrm { x } ^ { 2 } } \right] \cdot \frac { 1 } { \sqrt { 1 - \mathrm { x } ^ { 4 } } } \cdot 2 \mathrm { x } [dydx]x=12\left\lbrack \frac{dy}{dx} \right\rbrack_{x = \frac{1}{\sqrt{2}}}

= 1loge10[1sin112].1114.2×12\frac{1}{\log_{e}10}\left\lbrack \frac{1}{\sin^{- 1}\frac{1}{2}} \right\rbrack.\frac{1}{\sqrt{1 - \frac{1}{4}}}.2 \times \frac{1}{\sqrt{2}}

= log10eπ×4×32×2\frac{\log_{10}e}{\pi} \times \frac{4 \times \sqrt{3}}{2} \times \sqrt{2} = 46πlog10e\frac{4\sqrt{6}}{\pi}\log_{10}e