Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

If y=lognx, where logn means loge loge loge .....(repeated n times), then xlogx log2x log3x....log n-1 xlognx dydx\frac{dy}{dx} is equal to :

A

log x

B

x

C

1

D

lognx

Answer

lognx

Explanation

Solution

The correct answer is option (D) : lognx
\because y=lognxy=log^n x
On differentiating w.r.t xx, we get,
xlogxlog2xlog3x.....logn1xlognxdydxx\,log\,x\,log^2x\,log^3x.....log^{n-1}xlog^nx\frac{dy}{dx}
xlogxlog2xlog3x.....logn1xlognx.1xlogxlog2xlog3x.....logn1x\frac{x\,log\,x\,log^2x\,log^3x.....log^{n-1}xlog^nx.1}{x\,log\,x\,log^2x\,log^3x.....log^{n-1}x}

The correct option is (D):
=lognx= log^nx