Solveeit Logo

Question

Question: If \(y=\log {{x}^{x}}\), then the value \(\dfrac{dy}{dx}\) is A. \({{x}^{x}}\left( 1+\log x \right...

If y=logxxy=\log {{x}^{x}}, then the value dydx\dfrac{dy}{dx} is
A. xx(1+logx){{x}^{x}}\left( 1+\log x \right)
B. log(ex)\log \left( ex \right)
C. log(ex)\log \left( \dfrac{e}{x} \right)
D. log(xe)\log \left( \dfrac{x}{e} \right)

Explanation

Solution

We first define the multiplication rule and how the differentiation of function works. We take the addition of these two different differentiated values. We take the dydx\dfrac{dy}{dx} altogether. We keep one function and differentiate the other one and then do the same thing with the other function. Then we take the addition to complete the formula.

Complete answer:
We now discuss the multiplication process of two functions where f(x)=u(x)v(x)f\left( x \right)=u\left( x \right)v\left( x \right)
Differentiating f(x)=uvf\left( x \right)=uv, we get ddx[f(x)]=ddx[uv]=udvdx+vdudx\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ uv \right]=u\dfrac{dv}{dx}+v\dfrac{du}{dx}.
We simplify the logarithm by y=logxx=xlogxy=\log {{x}^{x}}=x\log x.
The above-mentioned rule is the multiplication rule. We apply that on f(x)=xlogxf\left( x \right)=x\log x. We assume the functions where u(x)=x,v(x)=logxu\left( x \right)=x,v\left( x \right)=\log x
We know that differentiation of u(x)=xu\left( x \right)=x is u(x)=1{{u}^{'}}\left( x \right)=1 and differentiation of v(x)=logxv\left( x \right)=\log x is v(x)=1x{{v}^{'}}\left( x \right)=\dfrac{1}{x}. We now take differentiation on both parts of f(x)=xlogxf\left( x \right)=x\log x and get ddx[f(x)]=ddx[xlogx]\dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ x\log x \right].
We place the values of u(x)=1{{u}^{'}}\left( x \right)=1 and v(x)=logxv\left( x \right)=\log x to get
ddx[xlogx]=xddx(logx)+(logx)ddx(x)\dfrac{d}{dx}\left[ x\log x \right]=x\dfrac{d}{dx}\left( \log x \right)+\left( \log x \right)\dfrac{d}{dx}\left( x \right).
We take all the dydx\dfrac{dy}{dx} forms altogether to get

& \dfrac{d}{dx}\left[ f\left( x \right) \right]=\dfrac{d}{dx}\left[ x\log x \right] \\\ & \Rightarrow {{f}^{'}}\left( x \right)=x\times \dfrac{1}{x}+\left( \log x \right)\left( 1 \right) \\\ & \Rightarrow {{f}^{'}}\left( x \right)=1+\log x=\log e+\log x \\\ & \Rightarrow {{f}^{'}}\left( x \right)=\log \left( ex \right) \\\ \end{aligned}$$ Therefore, the differentiation of $y=\log {{x}^{x}}$ is $$\log \left( ex \right)$$. **And hence the correct answer is option B.** **Note:** We need remember that in the chain rule $$\dfrac{d}{d\left[ h\left( x \right) \right]}\left[ goh\left( x \right) \right]\times \dfrac{d\left[ h\left( x \right) \right]}{dx}$$, we aren’t cancelling out the part $$d\left[ h\left( x \right) \right]$$. Canceling the base differentiation is never possible. It’s just a notation to understand the function which is used as a base to differentiate. The rule may be extended or generalized to many other situations, including to products of multiple functions, to a rule for higher-order derivatives of a product, and to other contexts.