Solveeit Logo

Question

Question: If y = log(tanx), then find \(\dfrac{dy}{dx}\) at \(x=\dfrac{\pi }{4}\)....

If y = log(tanx), then find dydx\dfrac{dy}{dx} at x=π4x=\dfrac{\pi }{4}.

Explanation

Solution

Hint: Use the chain rule of differentiation, i.e. d(g(f(x)))dx=d(gof(x))d(f(x))d(f(x))dx\dfrac{d\left( g\left( f\left( x \right) \right) \right)}{dx}=\dfrac{d\left( gof\left( x \right) \right)}{d\left( f\left( x \right) \right)}\dfrac{d\left( f\left( x \right) \right)}{dx}. Let g(x) = logx and f(x) = tanx. Apply chain rule of differentiation and hence find the derivative of gof(x). Finally, substitute x=π4x=\dfrac{\pi }{4} and evaluate the expression of the derivative and hence find the value of the derivative at x=π4x=\dfrac{\pi }{4}. Alternatively, use the fact that if y=logxy=\log x then x=eyx={{e}^{y}} and hence prove that ey=tanx{{e}^{y}}=\tan x. Now differentiate both sides using the method of implicit differentiation to find the value of dydx\dfrac{dy}{dx}. Substitute x=π4x=\dfrac{\pi }{4} and the value of y at x=π4x=\dfrac{\pi }{4} and hence find the value of dydx\dfrac{dy}{dx} at x=π4x=\dfrac{\pi }{4}.

Complete step-by-step answer:

We have y=log(tan(x))y=\log \left( \tan \left( x \right) \right)
Let f(x) = tanx and g(x) = log(x)
Hence, we have y=gof(x)y=gof\left( x \right)
Now, we know that from the chain rule of differentiation, d(g(f(x)))dx=d(gof(x))d(f(x))d(f(x))dx\dfrac{d\left( g\left( f\left( x \right) \right) \right)}{dx}=\dfrac{d\left( gof\left( x \right) \right)}{d\left( f\left( x \right) \right)}\dfrac{d\left( f\left( x \right) \right)}{dx}
Hence, we have
dydx=dd(f(x))(gof(x))ddxf(x)\dfrac{dy}{dx}=\dfrac{d}{d\left( f\left( x \right) \right)}\left( gof\left( x \right) \right)\dfrac{d}{dx}f\left( x \right)
We know that ddxlogx=1x\dfrac{d}{dx}\log x=\dfrac{1}{x}
Hence, we have dd(f(x))g(f(x))=1tanx\dfrac{d}{d\left( f\left( x \right) \right)}g\left( f\left( x \right) \right)=\dfrac{1}{\tan x}
We know that ddxtanx=sec2x\dfrac{d}{dx}\tan x={{\sec }^{2}}x
Hence, we have ddxf(x)=sec2x\dfrac{d}{dx}f\left( x \right)={{\sec }^{2}}x
Hence, we have
dydx=1tanxsec2x\dfrac{dy}{dx}=\dfrac{1}{\tan x}{{\sec }^{2}}x
Now at x=π4x=\dfrac{\pi }{4}, we have tanx=1\tan x=1 and secx=2\sec x=\sqrt{2}
Hence, we have
dydxx=π4=11(2)2=2{{\left. \dfrac{dy}{dx} \right|}_{x=\dfrac{\pi }{4}}}=\dfrac{1}{1}{{\left( \sqrt{2} \right)}^{2}}=2
Hence, the value of dydx\dfrac{dy}{dx} at x=π4x=\dfrac{\pi }{4} is 2

Note: Alternative Solution:
We have y=log(tanx)y=\log \left( \tan x \right)
We know that if y=logxy=\log x then x=eyx={{e}^{y}}
Hence, we have
ey=tanx{{e}^{y}}=\tan x
Differentiating both sides, we get
eydydx=sec2x{{e}^{y}}\dfrac{dy}{dx}={{\sec }^{2}}x
Hence, we have dydx=sec2xey\dfrac{dy}{dx}=\dfrac{{{\sec }^{2}}x}{{{e}^{y}}}
When x=π4x=\dfrac{\pi }{4}, we have y=log(tan(π4))=log1=0y=\log \left( \tan \left( \dfrac{\pi }{4} \right) \right)=\log 1=0
Hence, we have
dydxx=π4=(2)2e0=2{{\left. \dfrac{dy}{dx} \right|}_{x=\dfrac{\pi }{4}}}=\dfrac{{{\left( \sqrt{2} \right)}^{2}}}{{{e}^{0}}}=2, which is the same as obtained above.