Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=logtanxy = \log\, \tan \, \sqrt{x} then the value of dydx\frac{dy}{dx} is:

A

12x\frac{1}{2\sqrt{x}}

B

sec2xxtanx\frac{\sec^{2} \sqrt{x}}{\sqrt{x} \tan x}

C

2sec2x2 \, \sec^2 \sqrt{x}

D

sec2x2xtanx\frac{\sec^{2} \sqrt{x}}{2\sqrt{x} \tan x}

Answer

sec2x2xtanx\frac{\sec^{2} \sqrt{x}}{2\sqrt{x} \tan x}

Explanation

Solution

Let y=logtanxy = \log \tan\, \sqrt {x} Diff. both side w.r.t 'x' dydx=1tanx.ddx(tanx)\frac{dy}{dx}= \frac{1}{\tan \sqrt{x}} . \frac{d}{dx}\left(\tan \sqrt{x}\right) =1tanx.sec2x.12x= \frac{1}{\tan \sqrt{x}}.\sec^{2} \sqrt{x}. \frac{1}{2\sqrt{x}} dydx=1sec2x2xtanx\Rightarrow \frac{dy}{dx} = \frac{1 \sec^{2} \sqrt{x}}{2\sqrt{x} \tan \sqrt{x}}