Question
Mathematics Question on Continuity and differentiability
If y=logtan(4π+2x), then dxdy=
A
secx
B
sinx
C
cosecx
D
sec2x
Answer
secx
Explanation
Solution
Given, y=logtan(4π+2x)
⇒dxdy=tan(4π+2x)121sec2(4π+2x)
=21[tan(4π+2x)1+tan(4π+2x)tan2(4π+2x)]=
=21[sin(4π+2x)cos(4π+2x)+cos(4π+2x)sin(4π+2x)]
dxdy=sin(2π+x)1[∵cos2xsin2x=1]
=cosx1=secx[∵sin(2π+θ)=cosθ]