Solveeit Logo

Question

Mathematics Question on Continuity and differentiability

If y=logtan(π4+x2),y=\log \tan\left(\frac{\pi}{4} + \frac{x}{2}\right) , then dydx=\frac{dy}{dx} =

A

secx\sec \: x

B

sinx\sin\: x

C

cosecxcosec \: x

D

secx2\sec \: \frac{x}{2}

Answer

secx\sec \: x

Explanation

Solution

Given, y=logtan(π4+x2)y=\log \tan\left(\frac{\pi}{4} + \frac{x}{2}\right)
dydx=1tan(π4+x2)12sec2(π4+x2)\Rightarrow \frac{dy}{dx} = \frac{1}{\tan \left(\frac{\pi }{4} + \frac{x}{2}\right)} \frac{1}{2} \sec^{2} \left(\frac{\pi }{4} + \frac{x}{2}\right)
=12[1tan(π4+x2)+tan2(π4+x2)tan(π4+x2)]== \frac{1}{2} \left[ \frac{1}{\tan \left(\frac{\pi }{4} + \frac{x}{2}\right)} + \frac{\tan^{2} \left(\frac{\pi }{4} + \frac{x}{2}\right)}{\tan \left(\frac{\pi }{4} + \frac{x}{2}\right)}\right] =
=12[cos(π4+x2)sin(π4+x2)+sin(π4+x2)cos(π4+x2)]= \frac{1}{2} \left[ \frac{\cos \left(\frac{\pi }{4} + \frac{x}{2}\right)}{\sin \left(\frac{\pi }{4} + \frac{x}{2}\right)} + \frac{\sin \left(\frac{\pi }{4} + \frac{x}{2}\right)}{\cos \left(\frac{\pi }{4} + \frac{x}{2}\right)}\right]
dydx=1sin(π2+x)[cos2xsin2x=1]\frac{dy}{dx} = \frac{1}{\sin \left( \frac{\pi}{2} + x\right)} \left[ \because \:\: \cos^{2} x \sin^{2} x = 1\right]
=1cosx=secx[sin(π2+θ)=cosθ]= \frac{1}{\cos x} =\sec x \left[ \because \:\: \sin \left( \frac{\pi }{2} + \theta\right) =\cos \theta\right]