Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=logsinx(tanx),y =\log_{\sin x } \left(\tan x\right), then (dy/dx)π/4=\left(dy/dx\right)\pi/{4} =

A

4/log24 / \log 2

B

4/log2- 4 / \log 2

C

4/(log2)- 4 /( \log 2)

D

None of these.

Answer

4/log24 / \log 2

Explanation

Solution

y=logtanxlogsinxdydxy =\frac{\log\tan x}{\log\sin x} \Rightarrow \frac{dy}{dx} =log(tanx).1sinx.cosxlog(sinx).1tanx.sin2x(logsinx)2= \frac{\log\left(\tan x\right) . \frac{1}{\sin x}.\cos x -\log\left(\sin x\right). \frac{1}{\tan x}. \sin^{2}x}{\left(\log\sin x\right)^{2}} At x=x4x = \frac{x}{4} dydx=log(1).1log(12.2(log(12))2)\frac{dy}{dx} =\log\left(1\right) .1 -\log \left(\frac{\frac{1}{\sqrt{2}}. 2}{\left(\log \left(\frac{1}{\sqrt{2}}\right)\right)^{2}}\right) =22log214(log2)2=4log2= \frac{\frac{2}{2} \log2}{\frac{1}{4} \left(\log2\right)^{2}} = \frac{4}{\log2}