Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=log(secx+tanx),y = \log(\sec x + \tan x), then dydx=\frac{dy}{dx} =

A

tanx\tan x

B

secxsec x

C

tan2x\tan^2 x

D

none of these

Answer

secxsec x

Explanation

Solution

dydx=1secx+tanx.(secxtanx+sec2x)\frac{dy}{dx} = \frac{1}{\sec x + \tan x} . \left(\sec x \tan x + \sec^{2} x\right) =secx[tanx+secx]secx+tanx=secx = \frac{\sec x\left[\tan x +\sec x\right]}{\sec x +\tan x} = \sec x