Solveeit Logo

Question

Mathematics Question on Logarithmic Differentiation

If y=log(sec ex2)y= log(sec\ e^{x^2}), then dydx\frac {dy}{dx} =?

A

x2ex2tan e2x^2e^{x^2} tan\ e^2

B

ex2.tan ex2e^{x^2}.tan\ e^{x^2}

C

2x.ex2.tan ex22x.e^{x^2}.tan\ e^{x^2}

D

x.ex2tan ex2x.e^{x^2} tan\ e^{x^2}

Answer

2x.ex2.tan ex22x.e^{x^2}.tan\ e^{x^2}

Explanation

Solution

Let y=log(sec ex2)y = log(sec\ e^{x^2})
dydx=ddx[log(sec ex2)]\frac {dy}{dx}= \frac {d}{dx} [log(sec\ e^{x^2})]

dydx=\frac {dy}{dx}= 1sec(ex2).ddx[sec ex2]\frac {1}{sec(e^{x^2})}.\frac {d}{dx} [sec\ e^{x^2}]

dydx=\frac {dy}{dx}= \frac {1}{sec(e^{x^2})}. [sec\ e^{x^2}]$$tan\ e^{x^2}. \frac {d}{dx} (e^{x^2})
dydx=\frac {dy}{dx}= tan (ex2).ex2.ddx(x2)tan\ (e^{x^2}).e^{x^2}.\frac {d}{dx}(x^2)
dydx=\frac {dy}{dx}= tan (ex2).ex2.2xtan\ (e^{x^2}).e^{x^2}.2x
dydx=\frac {dy}{dx}= 2x.ex2.tan (ex2)2x.e^{x^2}.tan\ (e^{x^2})

So, the correct option is (C): 2x.ex2.tan (ex2)2x.e^{x^2}.tan\ (e^{x^2})