Question
Mathematics Question on Continuity and differentiability
If y=loglog(logx)2 then dxdy is equal to :
A
log(logx)1
B
xlog(logx)1
C
xlogx.log(logx)1
D
2xlog2x.log(logx)1
Answer
xlogx.log(logx)1
Explanation
Solution
Let y=log(log(logx)2) \therefore \:\:\: \frac{dy}{dx}=\frac{d}{dx} \left[\log \left\\{\log \left(\log x\right)^{2}\right\\}\right] =log(logx)21dxd[log(logx)2] =log(logx)21×(logx)21×dxd[(logx)2] =log(logx)21×(logx)21×x2logx =xlogx.log(logx)22 =2xlogxlog(logx)2=xlogxlog(logx)1