Solveeit Logo

Question

Mathematics Question on limits and derivatives

If y=logex(x2)2y =\log_{e}x \left(x-2\right)^{2} for x0,2x \ne0 , 2 then y(3)=y' \left(3\right) =

A

44564

B

44595

C

44654

D

None of these.

Answer

44595

Explanation

Solution

y=logex(x2)2=log(x2)2logexy =\log_{e}x \left(x-2\right)^{2} = \frac{\log\left(x-2\right)^{2}}{\log e^{x}} =2log(x2)xloge=2log(x2)x= \frac{2\log\left(x-2\right)}{x \log e} = \frac{2\log\left(x-2\right)}{x} dydx=2.x.1x2log(x2)1x2\therefore \frac{dy}{dx} = 2 . \frac{x. \frac{1}{x-2} - \log\left(x-2\right)1}{x^{2}} y(3)=29(31log1)=24(3)=23\therefore y'\left(3\right) = \frac{2}{9} \left(\frac{3}{1} - \log1\right) = \frac{2}{4} \left(3\right) = \frac{2}{3}