Solveeit Logo

Question

Question: If \(y = {\log _a}\left( x \right) + {\log _x}\left( a \right) + {\log _x}\left( x \right) + {\log _...

If y=loga(x)+logx(a)+logx(x)+loga(a)y = {\log _a}\left( x \right) + {\log _x}\left( a \right) + {\log _x}\left( x \right) + {\log _a}\left( a \right), then dydx\dfrac{{dy}}{{dx}}is equal to
(A) 1x+xlog(a)\dfrac{1}{x} + x\log \left( a \right)
(B) log(a)x+xlog(a)\dfrac{{\log \left( a \right)}}{x} + \dfrac{x}{{\log \left( a \right)}}
(C) xlog(a)x\log \left( a \right)
(D) 1xlog(a)log(a)x(log(x))2\dfrac{1}{{x\log \left( a \right)}} - \dfrac{{\log \left( a \right)}}{{x{{\left( {\log \left( x \right)} \right)}^2}}}

Explanation

Solution

Hint : We solve this question by first applying the log property that logm(n)=log(n)log(m){\log _m}\left( n \right) = \dfrac{{\log (n)}}{{\log (m)}} to solve the y as y is complex. To make it simple we first simplify y by applying log property and then taking differentiating both sides with respect to x so as to find dydx\dfrac{{dy}}{{dx}}. We should remember that ddx(log(x))=1x\dfrac{d}{{dx}}\left( {\log (x)} \right) = \dfrac{1}{x} and derivative of constant term is zero and derivative of ddx(cxn)=cn(x)(n1)\dfrac{d}{{dx}}\left( {c{x^n}} \right) = cn{\left( x \right)^{\left( {n - 1} \right)}} and the basic chain rule of derivative which states that derivative of a function of function is given by first differentiating the dependent function multiply derivative of independent function.ddx(f(g(x)))=ddx(f(g(x)))[ddx(g(x))]\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right)\left[ {\dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right]

Complete step-by-step answer :
We are given, y=loga(x)+logx(a)+logx(x)+loga(a)y = {\log _a}\left( x \right) + {\log _x}\left( a \right) + {\log _x}\left( x \right) + {\log _a}\left( a \right) and we have to find dydx\dfrac{{dy}}{{dx}}.
First we will apply the log property that logm(n)=log(n)log(m){\log _m}\left( n \right) = \dfrac{{\log (n)}}{{\log (m)}} to simplify y
So we get,
y=log(x)log(a)+log(a)log(x)+log(x)log(x)+log(a)log(a)y = \dfrac{{\log \left( x \right)}}{{\log \left( a \right)}} + \dfrac{{\log \left( a \right)}}{{\log \left( x \right)}} + \dfrac{{\log \left( x \right)}}{{\log \left( x \right)}} + \dfrac{{\log \left( a \right)}}{{\log \left( a \right)}}
Now, on further simplifications, we get,
y=log(x)log(a)+log(a)log(x)+1+1y = \dfrac{{\log \left( x \right)}}{{\log \left( a \right)}} + \dfrac{{\log \left( a \right)}}{{\log \left( x \right)}} + 1 + 1
y=log(x)log(a)+log(a)log(x)+2y = \dfrac{{\log \left( x \right)}}{{\log \left( a \right)}} + \dfrac{{\log \left( a \right)}}{{\log \left( x \right)}} + 2
As we know that, derivative of constant function is zero, derivative of log(x)\log \left( x \right) is 1x\dfrac{1}{x} and derivative of 1x\dfrac{1}{x}is 1x2\dfrac{{ - 1}}{{{x^2}}}
Now, differentiating both sides with respect to x using the chain rule of differentiation d(f(g(x)))dx=f(g(x))×g(x)\dfrac{{d\left( {f\left( {g\left( x \right)} \right)} \right)}}{{dx}} = f'\left( {g\left( x \right)} \right) \times g'\left( x \right), we get,
dydx=1xlog(a)+(1)log(a)x(log(x))2\dfrac{{dy}}{{dx}} = \dfrac{1}{{x\log \left( a \right)}} + \dfrac{{\left( { - 1} \right)\log \left( a \right)}}{{x{{\left( {\log \left( x \right)} \right)}^2}}}
We get, ddx(1log(x))=1x(log(x))2\dfrac{d}{{dx}}\left( {\dfrac{1}{{\log (x)}}} \right) = \dfrac{{ - 1}}{{x{{\left( {\log \left( x \right)} \right)}^2}}}, and we know that ddx(cxn)=cn(x)(n1)\dfrac{d}{{dx}}\left( {c{x^n}} \right) = cn{\left( x \right)^{\left( {n - 1} \right)}} which implies that,
dydx=1xlog(a)log(a)x(log(x))2\dfrac{{dy}}{{dx}} = \dfrac{1}{{x\log \left( a \right)}} - \dfrac{{\log \left( a \right)}}{{x{{\left( {\log \left( x \right)} \right)}^2}}}
Hence, option (D) is the correct answer.
So, the correct answer is “Option D”.

Note : The main thing while doing this question is to first simplify y so as to calculate its derivative easily. Keep in mind the log property that logm(n)=log(n)log(m){\log _m}\left( n \right) = \dfrac{{\log (n)}}{{\log (m)}}. Keep in mind the basic differentiation formulas like, derivative of constant function is zero, derivative of log(x)\log \left( x \right) is 1x\dfrac{1}{x} and derivative of 1x\dfrac{1}{x} is 1x2\dfrac{{ - 1}}{{{x^2}}} and the basic chain rule which states that ddx(f(g(x)))=ddx(f(g(x)))[ddx(g(x))]\dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right) = \dfrac{d}{{dx}}\left( {f\left( {g\left( x \right)} \right)} \right)\left[ {\dfrac{d}{{dx}}\left( {g\left( x \right)} \right)} \right]. Take care while doing the calculations.