Solveeit Logo

Question

Question: If \(y = {\log _5}\left( {{{\log }_7}x} \right)\), find \(\dfrac{{dy}}{{dx}}\)...

If y=log5(log7x)y = {\log _5}\left( {{{\log }_7}x} \right), find dydx\dfrac{{dy}}{{dx}}

Explanation

Solution

To solve this question, we will use the chain rule and also use some basic logarithmic properties. Chain rule states that, suppose f is a real valued function which is a composite of three functions u, v and w, i.e. f = (w o u) o v. If t=v(x)t = v\left( x \right) and s=u(t)s = u\left( t \right), then dfdt=d(wou)dt.dtdx=dwds.dsdt.dtdx\dfrac{{df}}{{dt}} = \dfrac{{d\left( {wou} \right)}}{{dt}}.\dfrac{{dt}}{{dx}} = \dfrac{{dw}}{{ds}}.\dfrac{{ds}}{{dt}}.\dfrac{{dt}}{{dx}}

Complete step-by-step answer :
Given that
y=log5(log7x)y = {\log _5}\left( {{{\log }_7}x} \right)
Let u=log7xu = {\log _7}x, then,
y=log5uy = {\log _5}u ……. (i)
According to the chain rule,
dydx=dydu×dudx\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{du}} \times \dfrac{{du}}{{dx}} ……… (ii)
Differentiating equation (i) both sides with respect to u, we get
dydu=ddu(log5u)\Rightarrow \dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {{{\log }_5}u} \right),
Now, using the change of base rule,
dydu=ddu(logeuloge5)\Rightarrow \dfrac{{dy}}{{du}} = \dfrac{d}{{du}}\left( {\dfrac{{{{\log }_e}u}}{{{{\log }_e}5}}} \right)
dydu=1uloge5\Rightarrow \dfrac{{dy}}{{du}} = \dfrac{1}{{u{{\log }_e}5}}
Putting the value of u,
dydu=1log7xloge5\Rightarrow \dfrac{{dy}}{{du}} = \dfrac{1}{{{{\log }_7}x{{\log }_e}5}}
Now, we have
u=log7xu = {\log _7}x
Using the change of base rule, we can write this as,
u=logexloge7u = \dfrac{{{{\log }_e}x}}{{{{\log }_e}7}}
Differentiating both sides with respect to x, we will get
dudx=1xloge7\dfrac{{du}}{{dx}} = \dfrac{1}{{x{{\log }_e}7}}
Now putting the values of dydu\dfrac{{dy}}{{du}} and dudx\dfrac{{du}}{{dx}} in equation (ii), we will get
dydx=1log7xloge5×1xloge7\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }_7}x{{\log }_e}5}} \times \dfrac{1}{{x{{\log }_e}7}}
dydx=1log7xloge5xloge7\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }_7}x{{\log }_e}5x{{\log }_e}7}}
Hence, we can say that if y=log5(log7x)y = {\log _5}\left( {{{\log }_7}x} \right), then dydx=1log7xloge5xloge7\dfrac{{dy}}{{dx}} = \dfrac{1}{{{{\log }_7}x{{\log }_e}5x{{\log }_e}7}}

Note : Whenever we ask this type of questions, we have to remember the basic rule of differentiation and logarithm. According to the change of base rule in logarithm, logba{\log _b}a can be written as logxalogxb\dfrac{{{{\log }_x}a}}{{{{\log }_x}b}}, where you can choose to change the logarithm to any base x. through this, we will get the answer.