Solveeit Logo

Question

Question: If \(y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n},\) then \(\left( {1 + {x^2}} \...

If y=(x+(1+x2))n,y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}, then (1+x2)d2ydx2+xdydx is;\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}{\text{ is;}}
(1)n2y\left( 1 \right){n^2}y
(2)n2y\left( 2 \right) - {n^2}y
(3)y\left( 3 \right) - y
(4)2x2y\left( 4 \right)2{x^2}y

Explanation

Solution

This question deals with the application of standard derivative formulae. Some of them are listed here:
(1)\left( 1 \right) Power rule: ddxxn=nxn1\dfrac{d}{{dx}}{x^n} = n{x^{n - 1}} .
(2)\left( 2 \right) Derivative of a constant is always zero: ddx(a)=0\dfrac{d}{{dx}}\left( a \right) = 0 .
(3)\left( 3 \right) Product rule: ddx(uv)=vdudx+udvdx\dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}} .
(4)\left( 4 \right) The quotient rule: ddx(uv)=vdudxudvdxv2\dfrac{d}{{dx}}\left( {\dfrac{u}{v}} \right) = \dfrac{{v\dfrac{{du}}{{dx}} - u\dfrac{{dv}}{{dx}}}}{{{v^2}}} .
(5)\left( 5 \right) Chain rule of differentiation: This is used when we deal with composite functions i.e. functions within functions. For example: sin(2x34x)\sin \left( {2{x^3} - 4x} \right) , in this example sin(x)\sin \left( x \right) is outer function and (2x34x)\left( {2{x^3} - 4x} \right) is the inner function. Therefore, ddxsin(2x34x)=(6x24)cos(2x34x)\dfrac{d}{{dx}}\sin \left( {2{x^3} - 4x} \right) = \left( {6{x^2} - 4} \right)\cos \left( {2{x^3} - 4x} \right) .

Complete step by step solution:
The given expression for yy is ;
y=(x+(1+x2))n ......(1)y = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}{\text{ }}......\left( 1 \right)
(ddxxn=nxn1)\left( {\because \dfrac{d}{{dx}}{x^n} = n{x^{n - 1}}} \right)
Differentiating the above equation with respect to xx , we get;
dydx=ddx(x+(1+x2))n\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{d}{{dx}}{\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n}
Using the chain rule of differentiation, we get;
dydx=n(x+1+x2)n1×(1+12(1+x2)12×2x)\Rightarrow \dfrac{{dy}}{{dx}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^{n - 1}} \times \left( {1 + \dfrac{1}{2}{{\left( {1 + {x^2}} \right)}^{\dfrac{{ - 1}}{2}}} \times 2x} \right)
Simplifying the above equation, we get;
dydx=n(x+1+x2)nx+1+x2×(1+2x21+x2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{x + \sqrt {1 + {x^2}} }} \times \left( {1 + \dfrac{{2x}}{{2\sqrt {1 + {x^2}} }}} \right)
On further simplification;
dydx=n(x+1+x2)nx+1+x2×(x+1+x21+x2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{x + \sqrt {1 + {x^2}} }} \times \left( {\dfrac{{x + \sqrt {1 + {x^2}} }}{{\sqrt {1 + {x^2}} }}} \right)
Cancelling the common term x+1+x2x + \sqrt {1 + {x^2}} in numerator and denominator we get;
dydx=n(x+1+x2)n1+x2 ......(2)\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{n{{\left( {x + \sqrt {1 + {x^2}} } \right)}^n}}}{{\sqrt {1 + {x^2}} }}{\text{ }}......\left( 2 \right)
On cross multiplication;
dydx×1+x2=n(x+1+x2)n\Rightarrow \dfrac{{dy}}{{dx}} \times \sqrt {1 + {x^2}} = n{\left( {x + \sqrt {1 + {x^2}} } \right)^n}
Since y=(x+(1+x2))ny = {\left( {x + \sqrt {\left( {1 + {x^2}} \right)} } \right)^n} , therefore replacing the value in the above equation we get;
dydx×1+x2=ny\Rightarrow \dfrac{{dy}}{{dx}} \times \sqrt {1 + {x^2}} = ny
Squaring both the sides , we get ;
(1+x2)(dydx)2=n2y2 ......(3)\Rightarrow \left( {1 + {x^2}} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} = {n^2}{y^2}{\text{ }}......\left( 3 \right)
Differentiating the above equation, we get;
By the product rule of differentiation, we know that;
[ddx(uv)=vdudx+udvdx]\left[ {\because \dfrac{d}{{dx}}\left( {uv} \right) = v\dfrac{{du}}{{dx}} + u\dfrac{{dv}}{{dx}}} \right]
Let u=(1+x2) and v=(dydx)2u = \left( {1 + {x^2}} \right){\text{ and }}v = {\left( {\dfrac{{dy}}{{dx}}} \right)^2}
(2x)(dydx)2+(1+x2)×2dydx×(dydx)2=n2×2ydydx\Rightarrow \left( {2x} \right){\left( {\dfrac{{dy}}{{dx}}} \right)^2} + \left( {1 + {x^2}} \right) \times 2\dfrac{{dy}}{{dx}} \times {\left( {\dfrac{{dy}}{{dx}}} \right)^2} = {n^2} \times 2y\dfrac{{dy}}{{dx}}
Further simplifying the above equation , we get;
2x×d2ydx2+(1+x2)2(dydx)(d2ydx2)=2n2ydydx\Rightarrow 2x \times \dfrac{{{d^2}y}}{{d{x^2}}} + \left( {1 + {x^2}} \right)2\left( {\dfrac{{dy}}{{dx}}} \right)\left( {\dfrac{{{d^2}y}}{{d{x^2}}}} \right) = 2{n^2}y\dfrac{{dy}}{{dx}}
As we have to calculate the value of (1+x2)d2ydx2+xdydx\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}} according to the given question , therefore, rearranging the terms to get the desired expression ;
Taking the term 2dydx2\dfrac{{dy}}{{dx}} outside on the L.H.S. , we get ;
2(dydx)((1+x2)d2ydx2+xdydx)=2n2ydydx\Rightarrow 2\left( {\dfrac{{dy}}{{dx}}} \right)\left( {\left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}}} \right) = 2{n^2}y\dfrac{{dy}}{{dx}}
Further simplifying the above expression;
(1+x2)d2ydx2+xdydx=n2y\Rightarrow \left( {1 + {x^2}} \right)\dfrac{{{d^2}y}}{{d{x^2}}} + x\dfrac{{dy}}{{dx}} = {n^2}y
Therefore, the correct answer for this question is option (1)\left( 1 \right) i.e. n2y{n^2}y.

Note:
We should always simplify the given expression first, before differentiation and always try to proceed according to the expression that has been given to us. There are chances of making a mistake while differentiating, whenever a square root is given in the expression but we know that x=(x)12\sqrt x = {\left( x \right)^{\dfrac{1}{2}}} so, always keep this in mind. With the basic knowledge of algebraic identities and standard derivative formulae of functions , this type of questions can be solved very easily.